Прямая призма. Sбок пов.=Росн*Н Pосн=4*с, с - сторона ромба диагонали ромба перпендикулярны и точкой пересечения делятся пополам. прямоугольный треугольник: катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы катет b =15 см (30:2) - (1/2) диагонали ромба гипотенуза с - сторона ромба по теореме Пифагора: c²=8²+15², c=17 см бОльшая диагональ призмы =50 см -наклонная. Большая наклонная имеет бОльшую проекцию, => рассмотрим прямоугольный треугольник: гипотенуза с=50 см - бОльшая диагональ призмы катет а= 30 см - бОльшая диагональ основания призмы катет H - высота призмы, найти. по теореме Пифагора: 50²=30²+H². H²=1600. H=40 см
Расстояние от точки до прямой ---на перпендикуляре из точки к этой прямой))) нужно построить прямую из В перпендикулярно к А1D1 A1D1 _|_ AA1 т.к. призма правильная (т.е. прямая) AD --проекция A1D1 на основание но A1D1 НЕ перпендикулярно В1А1 (как и AD не перпендикулярно АВ))) построим ВТ _|_ AD B1T1 _|_ A1D1 плоскость (ТВВ1) перпендикулярна плоскости (AA1D1) BT1 _|_ A1D1 треугольник ВТТ1 --прямоугольный, ВТ1 --гипотенуза))) искомое расстояние BT1 = √(BT² + TT1²) = √((3/4) + 1) = √7 / 2 BT --высота равностороннего треугольника = а√3/2 ((в правильном 6-угольнике сторона 6-угольника = радиусу описанной окружности)))
Sбок пов.=Росн*Н
Pосн=4*с, с - сторона ромба
диагонали ромба перпендикулярны и точкой пересечения делятся пополам.
прямоугольный треугольник:
катет а= 8 см(16:2) - (1/2) диагонали ромба -основания призмы
катет b =15 см (30:2) - (1/2) диагонали ромба
гипотенуза с - сторона ромба
по теореме Пифагора: c²=8²+15², c=17 см
бОльшая диагональ призмы =50 см -наклонная.
Большая наклонная имеет бОльшую проекцию, =>
рассмотрим прямоугольный треугольник:
гипотенуза с=50 см - бОльшая диагональ призмы
катет а= 30 см - бОльшая диагональ основания призмы
катет H - высота призмы, найти.
по теореме Пифагора:
50²=30²+H². H²=1600. H=40 см
Sбок.пов=4*17*40
Sбок.пов=2720 см²