У равнобедренного треугольника есть такое свойство, что биссектриса, проведённая из его вершины, является одновременно и высотой, и медианой, то есть BD делит сторону AC пополам. То есть AD=DC=1/2AC, тогда нам надо найти чему равно:
CB+BD+DC=AB+BD+AD=CB+BD+1/2AC=AB+BD+1/2AC=x
При этом у нас есть следующее: AB+BC+AC=18 см Т.к. AB=BC (Равнобедренный треугольник),то: 2AB+AC=18 AC=18-2AB Подставляем в самое первое (AB+BD+1/2AC=x): AB+BD+9-AB=x BD=x-9 И это всё. Максимум, что можно найти. Да. Тут возможны 2 варианта: 1) Спутали равнобедренный с равносторонним треугольником (тогда возможно вычислить стороны); 2) Забыли указать какой-то угол (тогда можно вычислить остальные углы и с косинусов и синусов найти стороны).
В данном же случае периметр CBD будет равен: 9+BD=x Поскольку 9 это сумма AB + 1/2AC.
В случае, если это равносторонний треугольник, то его стороны равны 6 см, тогда 1/2AC=3 см и по теореме Пифагора: Отсюда периметр CBD равен 9+ и вычисляете примерное значение. В случае известности какого-то угла (допустим, при вершине), то отнимаете от 180 градусов данный угол и делите его на 2. Так получаете угол при основании и потом, с синуса угла находите биссектрису BD, которая будет равна: А 1/2AC будет найдена с косинуса этого угла.
Значит сторона квадрата не может быть больше 11
Квадрат со стороной 11 можно получить так:
для одной стороны взять палочки 9+2,
для другой 8+3
для третьей 7+4
для четвертой 6+5
Квадрат со стороной 10 можно получить так:
для одной стороны взять палочки 9+1,
для другой 8+2
для третьей 7+3
для четвертой 6+4
Квадрат со стороной 9 можно получить так:
для одной стороны взять палочку 9,
для другой 7+2
для третьей 6+3
для четвертой 5+4
Квадрат со стороной 8 можно получить так:
для одной стороны взять палочку 8,
для другой 7+1
для третьей 6+2
для четвертой 5+3
Квадрат со стороной 7 можно получить так:
для одной стороны взять палочку 7,
для другой 5+2
для третьей 4+3
для четвертой 6+1
Других квадратов составить нельзя
Всего 5 квадратов