1) 60/13
2) АD=13
3) 60√3
4) 120/13
Объяснение:
ABCD-ромб⇒АС⊥ВD, АО=0,5АС, DО=0,5ВD
АО=0,5АС=0,5·10=5
DО=0,5ВD=0,5·24=12
АС⊥ВD, по теореме Пифагора АD²=АО²+DО²=5²+12²=25+144=169⇒АD=13
2) АВ=ВС=СD=АD=13-сторона ромба
3) Площадь орт.проекции фигуры на плоскость равна произведению площади данной фигуры на косинус угла между плоскостью и данной фигурой.
Площадь ромба по готовой формуле: S=0,5AC·BD=0,5·10·24=120
Площадь орт проекции: s=S·cos((ABCD)∧α)=120·cos30°=120·√3/2=60√3
4) Через точку О - пересечение диагоналей ромба проведём перпендикуляр к стороне ВС, OM⊥BC.
Но так как ВС║AD⇒ME⊥AD, ME⊥BC⇒ME-высота ромба.
Ещё одна формула для нахождения площади ромба
S=ME·AD⇒120=ME·AD=13ME⇒ME=120/13
1) Опустим из точки М перпедикуляр МТ на плоскость α.
МТ⊥α, Е∈α⇒отрезок TE есть орт.проекция отрезка МЕ на плоскости α.
АD⊥МЕ⇒АD⊥ТЕ(теорема о трёх перпендикулярах)
Значить, ∠МЕT=(АВСD∧α)=30°
МТ⊥α, ЕТ∈α⇒МТ⊥ ЕТ⇒∠МТЕ=90°
∠МТЕ=90°,∠МЕT=30°⇒MT=0,5ME=0,5 ·120/13=60/13
Растояние между ВD и пл.α и есть отрезок МТ=60/13
Р.S. Все 4 пункта вычислены. Соответствие это выбор подходящего варианта ответа
1-В
2-А
3-Б
4-Д
а) У равнобедренного треугольника углы при основании равны; Пусть угол при основании - х, тогда
х+х+30=180(сумма всех углов треугольника = 180°)
2х+30=180
2х=150
х=75
ответ: угол при основании равен 75°
б) 2 варианта решения:
1) Если угол при вершине, противолежащий основанию = 40°, тогда угол при основании - х
2х+40=180
2х=140
х=70;
ответ: остальные углы равны 70°
2) Если угол при основании = 40°, тогда второй угол при основании также равен 40°. Пусть угол противолежащий основанию - х, тогда
40+40+х=180
80+х=180
х=180-80
х=100; ответ: угол, противолежащий основанию равен 100°
в) Угол при основании равен 30°, тогда второй угол при основании также равен 30°(т.к. треугольник равнобедренный)
пусть угол, противолежащий основанию - х, тогда
30+30+х=180
60+х=180
х=180-60
х=120
ответ: угол, противолежащий основанию равен 120°