В треугольнике ABC угол B - прямой. AB = 6 Точки K и F лежат на сторонах AC и BC соответственно, причём AK = 4, KC = 7, угол KFC = 90° Найдите длину отрезка KF
Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Теорема 4 (теорема Менелая). Если некоторая прямая пересекает стороны AB и BC треугольника ABC в точках X и Y соответственно, а продолжение стороны AC — в точке Z (рис. 4), то
Теорема 5. Пусть в остроугольном треугольнике ABC проведены высоты AA1 и CC1 (рис. 5). Тогда треугольники A1BC1 и ABC подобны, причем коэффициент подобия равен cos ∠B.
Лемма 1. Если стороны AC и DF треугольников ABC и DEF лежат на одной прямой или на параллельных прямых (рис. 6), то
Лемма 2. Если два треугольника имеют общую сторону AC (рис. 7), то
Лемма 3. Если треугольники ABC и AB1C1 имеют общий угол A, то
Лемма 4. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Определим значение величины угла при основании равнобедренного треугольника АВС:(180° - 40°) : 2 = 70°2). Найдем центр полуокружности. Для этого разделим сторону ВС треугольника АВС пополам. ОВ=ОС= R3) Соединим центр O с точками D и Е, в которых полуокружность пересекает стороны треугольника АВС: OD=OE=OB=OC=R4) Рассмотрим треугольники DOC и EOB.5) /\ DOC - равнобедренный (OD=OC=R). Угол при его основании равен 70° , следовательно угол DOC при вершине равен180° - 2·70° = 40°Но угол DOC - центральный угол полуокружности, следовательно градусная мера дуги DC также равна 40°6) /\ EOB - равнобедренный (OE=OB=R).Угол при основании равен 40°,следовательно угол ЕOB при вершине равен180° - 2·40° = 100°Но угол ЕOB - центральный угол полуокружности, следовательно градусная мера дуги ЕВ также равна 100°7) По условию дуга ВEDC - полуокружность, а следовательно ее градусная мера равна 180°. Градусные меры дуг DC и ЕВ нам известны, и теперь мы можем легко найти градусную меру дуги DE:180°-100°- 40° = 40°
1)5,6-3,8=1,8 2)пусть первый угол х,а второй х+70,тогда х+(х+70)=180 2х+70=180 2х=180-70 2х=110 х=55 3)15+18=33 4)108:2=54-АОB DOC 180-54=126-ВОД 5)Так возьмите в руки транспортир и начертите Начертите прямую линию. На ней поставьте точку где-нибудь в серединке. Приложите транспортир прямой стороной к прямой линии, Точка "0' на транспортире должна совпадать с вашей точечкой на прямой линии. Не сдвигайте транспортир! На выпуклой стороне найдите отметку 132 градуса. Если есть только отметки 130 и 140, найдите примерно. Около этой отметки поставьте точку. Соедините по линейке две точки - ту, что на прямой и ту, что отметили (132 градуса). Получилось два угла - один тупой 132 градуса, другой острый 48 градусов. Эти углы смежные. Читайте в учебнике определение смежных углов.
Вот этот смежный угол 48 градусов надо разделить пополам. То есть отложить транспортиром 24 градуса.
Теорема 1 (теорема Фалеса). Параллельные прямые высекают на пересекающих их прямых пропорциональные отрезки (рис. 1).
Определение 1. Два треугольника (рис. 2) называются подобными, если соответствующие стороны у них пропорциональны.
Теорема 2 (первый признак подобия). Если угол первого треугольника равен углу второго треугольника, а прилежащие к этим углам стороны треугольников пропорциональны, то такие треугольники подобны (см. рис. 2).
Теорема 3 (второй признак подобия). Если два угла одного треугольника равны соответственно двум углам другого треугольника, то такие треугольники подобны (рис. 3).
Теорема 4 (теорема Менелая). Если некоторая прямая пересекает стороны AB и BC треугольника ABC в точках X и Y соответственно, а продолжение стороны AC — в точке Z (рис. 4), то
Теорема 5. Пусть в остроугольном треугольнике ABC проведены высоты AA1 и CC1 (рис. 5). Тогда треугольники A1BC1 и ABC подобны, причем коэффициент подобия равен cos ∠B.
Лемма 1. Если стороны AC и DF треугольников ABC и DEF лежат на одной прямой или на параллельных прямых (рис. 6), то
Лемма 2. Если два треугольника имеют общую сторону AC (рис. 7), то
Лемма 3. Если треугольники ABC и AB1C1 имеют общий угол A, то
Лемма 4. Площади подобных треугольников относятся как квадрат коэффициента подобия.