По одному из свойств касательных, проведённых из одной точки, отмеченные лучи являются биссектрисами углов ∠CBА и ∠EDC соответственно; если углы ∠АВС и ∠CDЕ являются равными, то и образованные биссектрисами углы тоже равны (∠ЕDО=∠ОDС=∠СВО=∠ОВА); получаем ΔDОВ с равными углами ∠ОDВ=∠DВО; что значит, что ΔDОВ - равнобедренный; DO=ВО;
Радиус, проведённый в точку касанияПо свойству такого радиуса проведённый отрезок ОС будет перпендикулярен прямой ВD; те OC - высота ΔDOВ; по свойству равнобедренного треугольника OC является и медианой; значит, СD=СВ;
Отрезки касательныхПо свойству касательных, проведённых из одной точки, отрезки ВС, ВА и DC, DЕ касательных попарно равны (те ВС=ВА и DC=DЕ); мы доказали, что DС=ВС; значит, ВС=ВА=DC=DЕ, ч.и.т.д.
№2Обратные теоремы действенны - нужно доказать тоже самое, только в обратную сторону. Поэтому напишу вкратце.
Если АВ=ВС=CD=DЕ, то при ОС⊥ВD ОВ=ОD (св-ва р/б Δ); тогда при ∠ОDВ=∠DВО и биссектрисах DO и ВО (∠ЕDО=∠ОDС и ∠СВО=∠ОВА) ∠ЕDО=∠ОDС=∠СВО=∠ОВА, ч.и.т.д.
Проведём высоту ВД=АВ*cos30=4*0,866=3,46. Из точки М проведём к АС высоту МЕ. Получим два прямоугольных подобных треугольника ДВС и ЕМС(поскольку у низ по условию ВМ=МС). МЕ параллельна ВД и проходит через середину ВС следовательно это средняя линия треугольника ДВС. Отсюда МЕ=ВД/2=1,73. И ДЕ=ЕС. Косинус угла АМЕ равен cos аме=МЕ/AM=1,73/(корень из 19)=0,3967. Отсюда угол =66гр. 24 мин. Синус этого угла равен =0,92. Отсюда АЕ=АМ*sinАМЕ=4,36*0,92=4. АС=АЕ+ЕС=4+2=6.(поскольку ДЕ=ЕС=АЕ-АД=4-2=2). Отсюда площадь треугольника S=1/2*АС*ВД=1/2*6*3,46=10,38.