2)Сначала докажем что биссектриса совпадает с медианой:
AD = CD, т. е. BD - биссектриса и BDA = BDC = 90°; таким образом, BD также и высота треугольника и медиана ABC.
Медиана делит этот треугольник на 2 равновеликих(равных)
Тоесть ABD=CAD если точки m и k являються серединами сторон разных(но равных) треугольников, то соответственно AKD=CM
3) Сначала докажем что биссектриса совпадает с медианой: AH = CH, т. е. BH - биссектриса и BHA = BHC = 90°; таким образом, BH также и высота треугольника и медиана ABC. Нарисовали ресунок
ABC - треугольник BH - высота
Они равны так как:
1) Сторона BH - общяя
2) угол BAH = углу BCH (как углы равнобедренного треугольника)
3) Угол AHB=AHC как углы при высоте(прямые)
4) Сторона AB= строное BC( как стороны равнобедренного треугольника)
Значит, треугольники равны
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности.
2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника.
3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.
Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах.
Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.
Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.