ДАНО
c = 5 см - образующая конуса
D = 4 см - диаметр основания.
r= 1 см - диаметр шарика.
НАЙТИ
N =? - число шариков.
РЕШЕНИЕ
Объем конуса по высоте и радиусу основания по формуле:
V = 1/3*π*R²*H
Находим высоту конуса - H по теореме Пифагора.
b = R = D/2 = 4/2 = 2 см -
1) a² = 5² - 2² = 25 - 4 = 21
2) H = a = √21 - высота конуса.
Объем конуса
3) V1 = 1/3*π*4*√21= 4/3*√21*π см³ - объем конуса превращаем в шарики.
Объем шара по формуле - R = 1.
V2 = 4/3*π*R³ = 4/3*π
Находим число полученных шариков - делением.
N = V1 : V2 = √21 ≈ 4.6 ≈ 4 шт - шариков - ОТВЕТ
И еще 0,58 шарика останется
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5