Дан вектор a(2; 1; - 2) а) Известно, что a = EF. Найдите координаты точки E, если F(4; - 1; - 2). б) Найдите значения m и n, при которых векторы a и b (-4; m; n) коллинеарны. в) Найдите координаты и модуль вектора c = 2a
1. Треугольники ABC u BCD равны, так как угол ABC = углу DBC и по гипотенузе (так как треугольники прямоугольные). Равны по углу и гипотенузе (когда треугольники прямоугольные, то нужны две пары равных элементов). 2. Данная фигура - прямоугольник, сл-но противоположные стороны равны. Значит, CDE = CME, так как треугольники прямоугольные и общая гипотенуза и равные катеты (здесь можно любые пары взять). 3. Как я думаю, BD - высота, медиана, сл-но и биссектриса, и значит, что треугольник большой р/б. Снова по общей стороне и равным катетам. 4. Две пары равных углов (показаны на рисунке) и общая сторона. Признак: по двум углам и стороне. 5. (Прости, тут даже непонятно, что за треугольники). 6. AKD равен ELC, так как KD = LE и KA = LC 7. AMB равен BNC так как треугольники прямоугольные и AB = BC и угол MBA равен NBC (так как вертикальные). 8. Вроде как два те маленьких треугольника прямоугольные и есть две пары равных сторон.
1. Нам дано, то что АВ=ВС, АD=DC. ВD - общая. То тогда эти треугольники равны (3 признак равенства треугольника) 2. Нас дано, то что АВ=ВС, АD=CD. ВD - общая. То тогда эти треугольники равны и угол ВАД=ВСД. Так как это 3 признак равенства треугольника (3 стороны равны, то тогда углы тоже) 3. Фотография Чтобы найти угол ВАС, надо найти два угла треугольника АВЛ. Нам дано угол АВЛ, мы должны найти угол АЛВ АЛВ=180^-120^=60^ ВАС=2ВАЛ
Тогда, когда мы знаем, что АЛ-это биссектриса, то тогда ВАЛ=ЛАС
мне тоже нужен