Средняя линия треугольника соединяет середины двух его сторон, параллельна третьей и равна её половине. Обозначим треугольник АВС. АВ=ВС. Если средняя линия соединяет середины АВ и ВС, то основание АС треугольника равно 2•5=10. Тогда сумма равных боковых сторон равна 40-10=30, и каждая из них 30:2=15 см.
Средняя линия может соединять и середины одной боковой стороны и основания. Рассмотрим такой случай для данного условия. Пусть средняя линия равна половине боковой стороны АВ. Тогда каждая боковая равна 2•5=10, их сумма 20 см, и на основание останется 40-20=20 см. Из неравенства треугольника: любая сторона меньше суммы двух других. Следовательно, для данного треугольника основание равно 10 см, боковые стороны по 15 см.
<BAC = <DCB = 60 => <ABC = <ADC= 120 => <ABD = <ADB = 60 (диагональ ромба - биссектриса)В треугольнике ABD все углы равны по 60 => этот треугольник - равносторонний => AB = AD = BD = 18.
Проведем диагональ AC.
Диагонали ромба точкой пересечение делятся пополам => BO = OD = 9, AO = OC (O - точка пересечения диагоналей BD и AC).
Так как диагонали ромба пересекаются под прямым углом, треугольник AOD - прямоугольный.
По теореме Пифагора: 324 - 81 = 243 => AO = = => AC = =