Расстояние от середины большего основания до вершины тупого угла равно меньшему основанию, а большее основание в 2 раза больше меньшего основания. Следовательно, соединив середину большего основания М с вершиной тупого угла С, получим параллелограмм АВСМ, так как противоположные стороны ВС и АМ параллельны и равны, а это признак параллелограмма. Кроме того, Стороны СМ, ВС и АМ равны, следовательно, ABCD - ромб. Кроме того, АВ = CD (дано). Итак,
АВ=ВС=CD = 16см, а AD = 32см. Значит периметр трапеции равен
AO=CO, ∠AOM=∠COT=90° ∠MAO=∠TCO (нактерст лежащие при параллельных основаниях трапеции) △AOM=△COT (по стороне и прилежащим к ней углам) OM=OT Диагонали ATCM перпендикулярны и точкой пересечения делятся пополам, ATCM - ромб.
В ромб можно вписать окружность (так как суммы его противоположных сторон равны). Центр вписанной окружности ромба - точка пересечения диагоналей (так как диагонали являются биссектрисами его углов). Радиус вписанной окружности - перпендикуляр из центра на сторону (OH⊥AT).
Р = 80 см.
Объяснение:
Пусть трапеция ABCD и АВ = CD.
Середина большего основания - точка М.
Расстояние от середины большего основания до вершины тупого угла равно меньшему основанию, а большее основание в 2 раза больше меньшего основания. Следовательно, соединив середину большего основания М с вершиной тупого угла С, получим параллелограмм АВСМ, так как противоположные стороны ВС и АМ параллельны и равны, а это признак параллелограмма. Кроме того, Стороны СМ, ВС и АМ равны, следовательно, ABCD - ромб. Кроме того, АВ = CD (дано). Итак,
АВ=ВС=CD = 16см, а AD = 32см. Значит периметр трапеции равен
АВ+ВС+CD+AD = 3*16+32 = 80см.