На ребре прямого двугранного угла лежит хорда сферы, равная радиусу сферы. Центр сферы лежит внутри двугранного угла и удален от каждой из его граней на 3. Найдите радиус сферы.
Прямоугольный треугольник сторонами которого являются диагональ призмы, диагональ основания призмы и высота призмы. Высота лежит против угла 30°, она вдвое меньше гипотенузы. Значит 24√2. вычислим диагональ основания призмы. (24√2)²-(12√2)²=576·2-144·2=1152-288=864. Диагональ равна √864=12√6=12√3·√2. Так как диагональ квадрата со стороной а равна всегда а√2, то сторона основания призмы равна 12√3. Площадь основания S1=(12√3)²=144·3=432 см², Площадь двух оснований равна 432·=864 см². Вычислим площадь боковой поверхности призмы S2=4·12√3·12√2=576√6. Полная поверхность: 864+576√6≈2275 см² ответ: 2275 см²
Всего в круге 360 градусов.
То есть если пройти 360°, мы окажемся в начальной точке.
1) 360° × 15 = 5400°
Мы 360 градусов 15 раз, оказались в начальной точке.
У нас осталось расстояние в 7°.
Угол в 7° лежит в первой четверти.
Значит, и угол в 5407° лежит в первой четверти.
2) 360° × 69 = 24840°
Мы 360 градусов 69 раз, оказались в начальной точке.
У нас осталось расстояние в 50°.
Стоит минус, значит идём по часовой стрелке.
Угол в -50° лежит в четвёртой четверти.
Значит, и угол в -24890° лежит в четвёртой четверти.