Пластина (в формі трапеції) вертикально занурена в воду, як зображено на малюнку. Обчислити тиск води на пластину, відповідь записати в тонах. h1=1м,h2=7м, a=5м, b=4м, c=10м. * h2- вважати за висоту трапеції
Высота QL делит тр-к PQR на два подобных треугольника: QRL и PQL. Эти прямоугольные тр-ки подобны по двум равным углам: уг.QRL = уг.PQL и уг.RQL = уг.QPL как острые углы с взаимно перпендикулярными сторонами. Эти тр-ки подобны также и исходному тр-ку PQR по тем же углам.
Против равных углов в подобных тр-ках лежат пропорциональные стороны:
Катет PQ в тр-ке PQR и катет PL в тр-ке PQL лежат против равных углов (уг.QRL = уг.PQL), гипотенуза PR в тр-ке PQR и гипотенуза PQ в тр-ке PQL лежат (естественно!) против прямых углов, поэтому PQ:PL = PR:PQ: ,
8(x-2)=-5(y-1) 8x-16=-5y+5 8x+5y-21=0 - уравнение вида аx+by+c=0 , причем {a;b}- координаты вектора ортогонального этой прямой В данном случае {8;5} Уравнение ортогональной ей прямой будет иметь общий вид -5х+8у+с=0 Координаты ортогонального вектора {-5;8} так подобраны, чтобы вектор {8;5} был ортогонален вектору {-5;8} , т.е их скалярное произведение равно 0 8·(-5)+5·8=0
Чтобы найти с подставим координаты точки С(3;10) в уравнение
-5·3+8·10+с=0 ⇒ с=-65 -5х+8у-65=0 или 5х-8у+65=0
Это уравнение можно получить как уравнение прямой проходящей через точку С с направляющим вектором {p;q}
направляющий вектор прямой m - это нормальный вектор прямой l с координатами {8;5}
Высота QL делит тр-к PQR на два подобных треугольника: QRL и PQL. Эти прямоугольные тр-ки подобны по двум равным углам: уг.QRL = уг.PQL и уг.RQL = уг.QPL как острые углы с взаимно перпендикулярными сторонами. Эти тр-ки подобны также и исходному тр-ку PQR по тем же углам.
Против равных углов в подобных тр-ках лежат пропорциональные стороны:
Катет PQ в тр-ке PQR и катет PL в тр-ке PQL лежат против равных углов (уг.QRL = уг.PQL), гипотенуза PR в тр-ке PQR и гипотенуза PQ в тр-ке PQL лежат (естественно!) против прямых углов, поэтому
PQ:PL = PR:PQ: ,
откуда
PQ^2 = PL * PR.