Решение. Проведем окружность данного радиуса с центром в данной точке М (рис. 104). Пусть О — общая точка этой окружности и данной прямой а. Проведем теперь окружность данного радиуса с центром в точке О. Эта окружность является искомой.
У вас получается 2 треугольника А1 К В1 и А2 К В2 Они подобны тк соотв признакам подобия, то есть имеют по паре одинаковых углов, в вашем случае можно сразу сказать. , что все углы равны, при К один для обоих треугольников и между прямой (любой из двух) из точки К и линиями соединяющими (А1В1 и А2В2) точки пересечения плоскостей, поскольку плоскости параллельны. Линии А1В1 и А2В2 так же параллельны. (см параллельность плоскостей) A2B2 относится к A1B1, как 9 к 4, значит и другие стороны этих треугольников относятся друг к другу так же. КВ1=8, значит КВ2 =8* 9/4= 18см
Надеюсь ничего не перепутал :) Изучалось очень давно!)
Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится. 1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2. 2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°; 3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса. [Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;] То есть 34/13 = (P - 39)/39; P = 141; 4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15; 5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30; Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
Решение. Проведем окружность данного радиуса с центром в данной точке М (рис. 104). Пусть О — общая точка этой окружности и данной прямой а. Проведем теперь окружность данного радиуса с центром в точке О. Эта окружность является искомой.