В основании правильной пирамиды лежит правильный многоугольник, а его вершина проецируется в центр основания. Значит в основании пирамиды Хеопса лежит квадрат. Площадь квадрата равна его стороне в квадрате, а гектар =10000м². Итак, сторона квадрата равна 100*√5,3 м. Соответственно, половина стороны равна 50√5,3м. Угол наклона бокового ребра к основанию - это угол в прямоугольном треугольнике с катетами: высота и половина стороны основания, а гипотенуза - апофема грани. Зная два катета - знаем тангенс угла наклона: tgα=h/(a/2) или 147/(50√5,3) = 1,28. Значит угол равен 52 градуса. ответ: угол наклона боковой грани к плоскости основания пирамиды Хеопса равен 52°
Подобные задачи ("стороны или углы пропорциональны числам") решаются следующим образом: 1) Вводится переменная х, обозначающая одну часть (пишется "пусть х -одна часть") 2) Стороны треугольника записываются через эту переменную: 3х, 4х, 6х ( то есть в каждой стороне треугольника содержится столько-то этих частей) 3) Стороны складываются, образуя периметр. Получаем уравнение: 3х + 4х+ 6х = 39 13Х = 39 х =3 4) Нам нужна меньшая сторона, то есть та сторона, которая содержит меньше всего таких частей. Она равна 3х =3*3 =9
Итак, сторона квадрата равна 100*√5,3 м.
Соответственно, половина стороны равна 50√5,3м.
Угол наклона бокового ребра к основанию - это угол в прямоугольном треугольнике с катетами: высота и половина стороны основания, а гипотенуза - апофема грани. Зная два катета - знаем тангенс угла наклона: tgα=h/(a/2) или 147/(50√5,3) = 1,28. Значит угол равен 52 градуса.
ответ: угол наклона боковой грани к плоскости основания пирамиды Хеопса равен 52°