М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maytanya47
maytanya47
13.03.2020 04:42 •  Геометрия

Длины сторон треугольника 7 см, 8 см, 10 см. найдите косинус наибольшего угла этого треугольника.

👇
Ответ:
SOSmi
SOSmi
13.03.2020

Пусть стороны а = 7, в = 8 и с = 10,

тогда наибольший угол находится против стороны с.

По теореме косинусов:

с² = а² + в² - 2·а·в·cosα

100 = 49 + 64 - 2·56·cosα

100 = 113 - 112·cosα

112·cosα = 13

cosα = 13:112 ≈ 0,116

4,6(7 оценок)
Открыть все ответы
Ответ:
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим \triangle ABC. Из условия ясно, что он — прямоугольный (так как \angle C = 90^{\circ}). AB = 6 cm — гипотенуза, AC — искомый катет, tg \angle A = 2\sqrt{2}
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: tg \angle A = \frac{BC}{AC}
Отсюда: AC = \frac{BC}{tg \angle A}
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
AB^2 = AC^2 + BC^2
Как мы выяснили чуть выше AC = \frac{BC}{tg \angle A}.
Заменяем и получаем:
AB^2 = (\frac{BC}{tg \angle A})^2 + BC^2
Немного поколдуем:
AB^2 = \frac{BC^2}{tg^2 \angle A} + BC^2 \\ 
AB^2 = \frac{BC^2 + BC^2 \cdot tg^2 \angle A}{tg^2 \angle A} \\ 
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\
Отсюда найдем BC:
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\ 
BC^2 = \frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A} \\ 
BC = \sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}
Теперь напомню зачем нам нужно было BC:
AC = \frac{BC}{tg \angle A}
Подставляем вместо BC новую подстановку:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A}
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
tg \angle A = 2\sqrt{2}, AB = 6 cm
Найдем, наконец, AC:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A} = \frac{\sqrt{\frac{(6 cm)^2 \cdot (2\sqrt{2})^2}{1+(2\sqrt{2})^2}}}{2\sqrt{2}} = \frac{\sqrt{\frac{36 cm^2 \cdot 8}{1+8}}}{2\sqrt{2}} =
= \frac{\sqrt{32 cm^2}}{2\sqrt{2}} = \sqrt{\frac{32}{2} cm^2} \cdot \frac{1}{2} = \sqrt{16 cm^2} \cdot \frac{1}{2} = 4 cm \cdot \frac{1}{2} = 2 cm
Это ответ.

Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
4,6(94 оценок)
Ответ:
danilyakimov1
danilyakimov1
13.03.2020

а) 60°. б)  90°.

Объяснение:

Многогранник АВСDA1B1C1D1 - параллелепипед, так как боковые ребра взаимно параллельны (дано).

а). В прямоугольнике АВСD  диагонали равны и точкой пересечения делятся пополам. Следовательно, треугольник АОВ равносторонний и углы при основании равны 60°. => ∠ВАО = 60°.

Прямые А1В1 и АС - скрещивающиеся по определению: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".

Угол между скрещивающимися прямыми - это угол между любыми двумя пересекающимися прямыми, которые параллельны исходным скрещивающимся.

Так как АВ параллельна А1В1, то угол между скрещивающимися прямыми А1В1 и АС равен углу между пересекающимися прямыми АВ и АС. То есть это угол ВАО = 60°.

б) Аналогично, угол между скрещивающимися прямыми АВ и А1D1 равен углу между пересекающимися прямыми АВ и АD., то есть углу ВАD.

Поэтому, так как АВСD - прямоугольник, то искомый угол -  ∠ВАD = 90°.

4,5(7 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ