Обозначим параллелограмм ABCD ,биссектриса проведена из угла В к стороне AD в точке M .Угол А =180°-150°=30°(сумма соседних углов параллелограмма 180°) .∠ABM равен углу BMC =150°÷2=75°(так как BM - биссектриса) .∠BMA треугольника ABM равен 180°-75°-30°=75°,значит треугольник ABM -равнобедренный с основанием BM ,поэтому AB=AM=16 см .AD=AM+MD=16+5= 21 см .Площадь параллелограмма ABCD найдём по формуле S=a×b×sinα(где а и b стороны параллелограмма ,а α-угол между ними).S=16×21×sin30°=336×0,5=168 см² .
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
n=-1
m=1.5
Объяснение:C(2m+n;7;-n) , D(-3;-5;m-3). CA÷AD=2÷3. Так как А относится к оси Оу, то Xa=0, Za=0.
По формуле: Xa=(Xc+(2÷3)×Xd)÷(1+(2÷3)) , Таже формула с Z.
Xa=(2m+n+(2÷3)×(-3))÷(1+(2÷3))=(2m+n-2)÷(5÷3)=(6m+3n-6)÷5
Za=(-n+(2÷3)×(m-3))÷(1+(2÷3))=((2m-6-3n)÷3)÷(5÷3)=(2m-6-3n)÷5
/ (2m-6-3n)÷5=0 / 2m-6-3n=0 / n=2-2m / n=-1
| ⇒| ⇒| ⇒|
\ (6m+3n-6)÷5=0 \ 6m+3n-6=0 \ 2m-3×(2-2m)=6 \ m=1.5
÷ - знак деления
× - знак умножения
/
| - скобка
\