В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
1. Боковая поверхность усечённого конуса находится по формуле:S=πL(r+R), где L - образующая, а r и R - радиусы оснований. 2. Из условия можно найти, что 120π=10π(r+R), откуда r+R=12. 3. В сечении такой конус представляет из себя равнобедренную трапецию, разделённую пополам (вертикально) высотой конуса, которая по условию равна 8. Одна половина представляет из себя прямоугольную трапецию, в которой высота равна 8, боковая сторона 10, а r и R- основания. 4. Из прямоугольной трапеции по т. Пифагора можно найти разность R-r. Она равна 6. Тогда, зная, что r+R=12 и R-r=6, находим, что r=3, а R=9
Синус - отношение противолежащего катета к гипотенузе. Косинус - отношение прилежащего катета к гипотенузе. Тангенс - отношение противолежащего катета к прилежащему.
1)Что значит синус 3/5? Это значит, что противолежащий катет равен 3 см, а гипотенуза равна 5 см. Начертим прямоугольный треугольник и сотрем катет, равный 3 см. Получим искомый угол. 2) То же самое делаем и с косинусом, то есть прилежащий катет будет равен 5, а гипотенуза равна 6 см. Опять же, стоите прямоугольный треугольник с прилежащим катетом 5 см и гипотенузой 6 см. Сотрете неизвестный катет и получите искомый угол. 3) С тангенсом дело будет иначе. Тангенс - отношение противолежащего катета к прилежащему. Строите прямоугольный треугольник. То есть один катет будет равен 2 см, а второй 1 см. Дальше достраиваете гипотенузу и сотрете катет, который равен 2 см. 4) 0.4 = 4/10 = 2/5. То есть в прямоугольном треугольнике противолежащий катет будет равняться 2 см, а гипотенуза 5 см. Достроите второй катет. В итоге получите искомый треугольник с синусов 0,4
В трапеции ABCD угол A равен 90, градусов, боковая сторона CD перпендикулярна диагонали AC; CD равен 3 см, AD равен 5 см, 1) Найти площадь трапеции. 2) Найти площадь треугольника AMD, если M – середина CD.
1) АВ⊥АD, ВС║AD ⇒ ∠В=90°
СН - высота (ABCD)
Площадь трапеции равна произведению её высоты на полусумму оснований.
S(ABCD)=CH•(BC+AD):2
CH=AC•CD:AD
AC=√(AD²-CD²)=√(5²-3²)=4
CH=3•4:5=2,4 (см)
BC=AH=√(AC²-CH²)=√(16-5,76)=3,2
S(ABCD)=2,4•(3,2+5):2=9,84 см²
* * *
2) Найти площадь треугольника AMD, если M – середина CD.
СМ=MD ⇒АМ - медиана и делит площадь ∆ АСD пополам (свойство).
S AMD=[AC•CD:2]:2=4•3:4=3 см²
Объяснение: