М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
strelecky
strelecky
05.05.2020 11:25 •  Геометрия

3. длина окружности равна . найти площадь сектора с центральным углом 40. 4. круг радиуса r=6 делится концентрической окружностью на две части - круг радиуса r и кольцо, площади которых соотносятся как 1: 3. найти r.

👇
Ответ:
Диля175
Диля175
05.05.2020

3) l=2\pi R=6\sqrt{5}\pi

R=3\sqrt{5}

S=\frac{\pi R^2}{360}\cdot40=\frac{\pi (3\sqrt{5})^2}{9}=5\pi

ответ: 5п

4) S_1=\pi r^2

S_2=\pi (R^2-r^2)

3S_1=S_2

3\pi r^2=\pi (R^2-r^2)

3r^2=R^2-r^2

4r^2=R^2

2r=R

r=\frac{R}{2}=\frac{6}{2} =3

ответ: 3

4,8(39 оценок)
Ответ:
egorsnaiper201
egorsnaiper201
05.05.2020

Первая задача решается без вариантов, повторять ее решение нет необходимости. 


У второй задачи возможны два варианта решения.
Первый - когда площадь внутреннего круга относится к площади кольца как 1:3
Найдем площадь исходного круга:
S=πr²=36π
Тогда 3/4 этой площади занимает кольцо, 1/4- внутренний круг.
36π:4=9π- площадь внутреннего круга
S=πr²=9π
r²=9
r =3
-----------------------
Второй вариант - площадь кольца относится к площади внутреннего круга как 1:3
Тогда площадь кольца 9π,
а площадь внутреннего круга
9π*3=27π
S=πr²=27π
r²=27
r=3√3


3. длина окружности равна . найти площадь сектора с центральным углом 40. 4. круг радиуса r=6 делитс
4,4(49 оценок)
Открыть все ответы
Ответ:
Tiktak222
Tiktak222
05.05.2020
Трапеция - это двухмерная геометрическая фигура, имеющая четыре вершины и лишь две параллельные стороны. Если длина двух ее непараллельных сторон одинакова, то трапеция называется равнобедренной или равнобокой. Границу такого многоугольника, составленную из его сторон, принято обозначать греческим словом «периметр». В зависимости от набора исходных данных вычислять длину периметра нужно по разным формулам. Если известны длины обоих оснований (a и b) и длина боковой стороны (c), то периметр (P) этой геометрической фигуры рассчитывается очень просто. Так как трапеция равнобедренна, то ее боковые стороны имеют одинаковую длину, а это значит, что вам известны длины всех сторон - просто сложите их: P = a+b+2*c. 2 Если длины обоих оснований трапеции неизвестны, но дана длина средней линии (l) и боковой стороны (c), то и этих данных достаточно для вычисления периметра (P). Средняя линия параллельна обоим основаниям и по длине равна их полусумме. Удвойте это значение и добавьте к нему тоже удвоенную длину боковой стороны - это и будет периметром равнобедренной трапеции: P = 2*l+2*c. 3 Если из условий задачи известны длины обоих оснований (a и b) и высота (h) равнобедренной трапеции, то с этих данных можно восстановить длину недостающей боковой стороны. Сделать это можно рассмотрев прямоугольный треугольник, в котором гипотенузой будет неизвестная сторона, а катетами - высота и короткий отрезок, который она отсекает от длинного основания трапеции. Длину этого отрезка можно вычислить, поделив пополам разность между длинами большего и меньшего оснований: (a-b)/2. Длина гипотенузы (боковой стороны трапеции), согласно теореме Пифагора, будет равна квадратному корню из суммы возведенных в квадрат длин обоих известных катетов. Замените в формуле из первого шага длину боковой стороны полученным выражением, и вы получите такую формулу периметра:P = a+b+2*√(h²+(a-b)²/4). Если в условиях задачи даны длины меньшего основания (b) и боковой стороны (c), а также высота равнобедренной трапеции (h), то рассматривая тот же вс треугольник, что и в предыдущем шаге, вам придется вычислять длину катета. Вновь воспользуйтесь теоремой Пифагора - искомая величина будет равна корню из разности между возведенной в квадрат длиной боковой стороны (гипотенузы) и высотой (катетом): √(c²-h²). По этому отрезку неизвестного основания трапеции можно восстановить его длину - удвойте это выражение и добавьте к результату длину короткого основания: b+2*√(c²-h²). Подставьте это выражение в формулу из первого шага и найдите периметр равнобедренной трапеции: P = b+2*√(c²-h²)+b+2*c = 2*(√(c²-h²)+b+c).
4,6(77 оценок)
Ответ:
ExLuSsiVe
ExLuSsiVe
05.05.2020

Объяснение:

Т.к. противолежащие ребра равны, получается AB=CD=1, AA1=DD1=2. По теореме Пифагора: AD1=√(1²+2²)=√5. Аналогично СD1=√5. AC=√(1²+1²)=√2. Рассмотрим ΔACD1: Он равнобедренный, т.к. AD1=CD1=√5. Соответственно , высота этого треугольника (назовем её D1M), проведенная к основанию АС и будет являться искомым расстоянием от точки D1. В равнобедренном треугольнике высота, проведенная к основанию, является и медианой, поэтому AM=CM=(√2)/2. Теперь по т. Пифагора можно найти катет D1M ΔD1MA: D1M=√(AD1²-AM²)=√((√5)²-((√2)/2)²)=√(5-1/2)=√4.5

4,7(45 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ