Есть простое решение, использующее свойство медиан: три медианы треугольника делят его на 6 равновеликих (одинаковой площади, но не равных) треугольников. Данный нам треугольник АВС Пифагоров (его стороны равны 3,4 и 5 см). Sabc=6см² и каждый из треугольников имеет площадь, равную 1см². Тогда искомое расстояние - высота треугольника (одного из шести) с катетом на гипотенузе AB. h=2S/АM = 2/(2,5)=0,8 см.
Но для практики решим эту задачу через формулу медианы треугольника, свойство медиан, делящихся точкой пересечения в отношении 2:1, считая от вершины и формулу Герона для площади. Пусть в треугольнике АВС <С=90° и стороны АС=b=3, ВС=а=4 и АВ=с=5. Найдем медианы Ма и Мc по формуле: Ma=(1/2)*√(2b²+2c²-a²). Ma=(1/2)*√(2*(3²)+2*(5)²-4²)=(1/2)*√(18+50-16)=√52/2. Mc=(1/2)*√(2*(3²)+2*(4)²-5²)=(1/2)*√(18+32-25)=5/2. Тогда отрезки медиан: АО=(2/3)*(√52/2)=2√13/3. ОМ=(1/3)*(5/2)=5/6. В треугольнике АОМ имеем (сразу приведя к общему знаменателю): АМ=5/2 = 15/6. АО=2√13/3=4√13/6. ОМ=5/6. Периметр Р=(20+4√13)/6. Полупериметр р=(10+2√13/6). Тогда по формуле Герона Sabc=√[p(p-a)(p-b)(p-c)] имеем: Sаom=√[(10+2√13)*(10+2√13-15)*(10+2√13-4√13)*10+2√13-5)]/36. Или:Sаom=√[(10+2√13)*(2√13-5)*(10-2√13)*(2√13+5)]/36. Мы видим, что у нас под корнем произведение разности квадратов: Sаom=√[(10²-(2√13)²)*((2√13)²-5²)/36 = √(48*27)/36=36/36 =1. Итак, мы пришли к началу: Искомое расстояние (высота ОН, проведенная к основанию АМ треугольника АОМ: ОН=2Sbom/АМ = 2/2,5 = 0,8. ответ: ОН=0,8см.
P.S. Решение приведено для тех, кто не любит формулу Герона, тем более, когда в полупериметре встречаются корни. Чаще всего (если не всегда) приходим к произведению разности квадратов в подкоренном выражении.
Соединив центры K и М окружностей
между собой и каждый из них с точкой
касания, получим два треугольника с
общей вершиной в точке А на отрезке между
точками касания окружностей с прямой.
Радиус, проведенный к касательной
в точку касания, перпендикулярен ей
( свойство),
Получившиеся прямоугольные треугольники
подобны по равным вертикальным углам и
накрестлежащим у их центров.
Пусть радиус меньшей окружности будет r,
а большей - R, и пусть часть отрезка между
их точками касания у меньшей окружности
будет х.
Тогда отрезок у большей окружности 5-х
( см. рисунок)
Тогда из подобия треугольников следует
отношение:
r:R=x:(5-x)
4:8=x:(5-x)
8х=20-4x
12x=20
х=5/3- длина отрезка у меньшей окружности
5-5/3=10/3 длина отрезка у большей
окружности
По т.Пифагора
KA2=42+(5/13)2
KA2=16+25/9=169/9
KA=13/3
Из треугольника в большей окружности
MA2=82+(10/3)2=676/9
MA=26/3
KA+MA=13/3+26/3=39/3=13
KM=13 см
наверное так