Если сумма расстояний одной из точек эллипса до его фокусов равна 4, то можно найти расстояние а от центра до вершины на большой оси.
Расстояния r1 и r2 от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке. Их сумма равна 2а.
а = (r1 + r2)/2 = 4/2 = 2.
Фокальным параметром p=b^2/a называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
Тогда искомая длина хорды, проходящей через фокус и перпендикулярной к его большой оси, равна 2р.
Фокальный параметр находится по формуле p = a(1 - e²).
2р = 2а(1 - е²) = 2*2*(1 -(√2/2)²) = 4*(1 - (2/4)) = 4*(1/2) = 2.
а прямые параллельны т.к соответственные углы равны , б прямые параллельны т.к накрест лежащие углы равны , с не параллельны т.к сумма односторонних углов должна быть равна 180 градусов , а тут 170 градусов , д прям параллельны т.к односторонние углы равны 180 градусов , е не параллельны т.к углов там нету