1)Так как отрезок АВ не параллелен плоскости, а отрезок АС(2,4) параллелен отрезку ВD(7,6), то АВСD-трапеция. Следовательно отрезок МF-средняя линия трапеции. МF=(АС+ ВD)/2 МF=(2,4+7,6)/2 МF=10/2 МF=5. ответ: 5 см.ИлИ
Пусть О - середина отрезка АВ. Опустим перпендикуляры к плоскости из точек А, В и О, соответствующие точки на плоскости обозначим A', B' и O', отрезки АА', ВВ' и ОО' - параллельны.Так как проекция сохраняет отношение длин коллинеарных отрезков, то A'O'/O'B'=АО/ОВ=1, т.е.O' - середина A'B'. Получается, что А'АВВ' - трапеция, где А'А и В'В - основания, а О'О - её средняя линия. Длина средней линии трапеции равна полусумме длин её оснований.
(2,4+7,6):2=5 (см)
ответ: расстояние от середины отрезка АВ до плоскости 5 сантиметров.
2)
столб длиной 3 м- АВ, длиной 6 м-ДС, перекладина в 5 м - ВС, расстояние между столбами-АД. ВЕ-высота данной трапеции(рисунок).
АД=ВЕ
ВА=ДЕ
СЕ=ДС-ЕД
СЕ=ДС-ВА=6-3=3м
т.к ДА=ВЕ - АД= корню квадратному из (ВС² - СЕ²)= корню из 25-9 = 4м
ответ:4 м
3)
Опустим перпендикуляр из точки к плоскости, его длина будет равна h см. Длина меньшей проекции а см, большей (а+4) см. Пользуясь теоремой Пифагора, можно составить следующие равенства
Приравняем:
273-8а=225
8а=273-225
8а=48
а=6
а+4=6+4=10
ответ: длина проекции наклонной 17 см равна 10 сантиметров, а наклонной 15см равна 6 сантиметров.
4)тут нарисовать надо равносторонний треугольник АВС, из А вверх рисуем отрезок АД, перпендикулярный плоскости АВС , расстояние от Д до отрезка будет = отрезку до середины ВС, например М
тогда ДМ=корень(АД^2+AM^2)
АМ- это высота равносторон. треуг.=а*корень3/2=4корень3
подставляем ДМ=корень(1+48)=7
1
5-9 Геометрия
Сформулируйте и докажите теорему, выражающую первый признак равенства треугольников
1
Попроси больше объяснений Следить Отметить нарушение от заринчик 06.03.2012
ответы и объяснения
alyonablazheva середнячок
2012-03-06T20:45:48+04:00
Теорема
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC. Теорема доказана.