3) к этому заданию рисунок не нужен решение: раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см средняя линия равна полусумме оснований = 14/2 = 7 см
2) <BOC = <AOD (вертикальные) BC ll AD (основания трапеции) <BCA = <CAD (накрест лежащие) <CBO = <ODA (накрест лежащие)==> ==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5) <KAD = <DAK (накрест лежащие) <DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==> ==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см ВС = ВК + КС = 4 + 6 = 10 см S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
Пусть этот треугольник будет АВС, где АВ и АС это катеты, а ВС - гипотенуза. Так как один угол в прямоугольном треугольнике равен 60, то другой 90-60=30 Значит, что данный треугольник - это половина равностороннего треугольника ДВС (у которого все стороны и углы равны) и меньший катет АС - это будет половина стороны ВС, так как больший катет АВ является одновременно и высотой и медианой равностороннего треугольника ДВС. Тогда пусть катет АС будет х, тогда гипотенуза ВС будет 2х, а их сумму мы знаем и составляем уравнение: х+2х=96 3х=96 х=32 см (это длина катета АС) тогда длина гипотенузы ВС будет 32*2=64 см
к этому заданию рисунок не нужен
решение:
раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см
средняя линия равна полусумме оснований = 14/2 = 7 см
2)
<BOC = <AOD (вертикальные)
BC ll AD (основания трапеции)
<BCA = <CAD (накрест лежащие)
<CBO = <ODA (накрест лежащие)==>
==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5)
<KAD = <DAK (накрест лежащие)
<DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==>
==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см
ВС = ВК + КС = 4 + 6 = 10 см
S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)