Центром описанной окружности треугольника является точка пересечения срединных перпендикуляров.
Для остроугольного треугольника этот центр будет в треугольнике.
Построение.
Построить нужный треугольник не составляет труда.
1) Для остроугольного треугольника центр описанной окружности будет внутри треугольника. .
Измерьте линейкой каждую сторону треугольника и найдите ее середину. С угольника ( у него есть прямой угол) проведите из середины каждой стороны прямые. Точка их пересечения - искомый центр описанной окружности.
Расстояние от него до вершин треугольника равны радиусу описанной окружности.
2) Для тупоугольного треугольника построение будет таким же, но срединные перпендикуляры пересекутся ВНЕ треугольника.
3) Для прямоугольного треугольника достаточно найти середину гипотенузы, т.к. срединные перпендикуляры пересекаются именно в этой точке. Полезно запомнить, что центром описанной вокруг прямоугольного треугольника окружности является середина его гипотенузы, т.к. расстояния от нее до вершин треугольника равны.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
Центром описанной окружности треугольника является точка пересечения срединных перпендикуляров.
Для остроугольного треугольника этот центр будет в треугольнике.
Построение.
Построить нужный треугольник не составляет труда.
1) Для остроугольного треугольника центр описанной окружности будет внутри треугольника. .
Измерьте линейкой каждую сторону треугольника и найдите ее середину. С угольника ( у него есть прямой угол) проведите из середины каждой стороны прямые. Точка их пересечения - искомый центр описанной окружности.
Расстояние от него до вершин треугольника равны радиусу описанной окружности.
2) Для тупоугольного треугольника построение будет таким же, но срединные перпендикуляры пересекутся ВНЕ треугольника.
3) Для прямоугольного треугольника достаточно найти середину гипотенузы, т.к. срединные перпендикуляры пересекаются именно в этой точке. Полезно запомнить, что центром описанной вокруг прямоугольного треугольника окружности является середина его гипотенузы, т.к. расстояния от нее до вершин треугольника равны.
Как это выглядит, дано в приложении.