Фонтан установлен в точке, которая является центроидом треугольника, образованного дорожками, соединяющими три входа в парк. расстояние между воротами указано на рисунке. найдите расстояние от главных ворот (№ 1) до фонтана.
В основании прямоугольный треугольник ABC с прямым углом C. С теоремы Пифагора (или обратив внимание на соотношение катетов) находим гипотенузу AB=2a. Найдем высоту пирамиды. Поскольку боковые ребра наклонены под одинаковыми углами к плоскости основания, проекции этих ребер на основание совпадают (каждая из них находится из прямоугольного треугольника, одним из катетов которого является высота пирамиды, а углом напротив нее является угол в 30°). Отсюда следует, что вершина пирамиды проектируется в центр окружности, описанной вокруг треугольника, являющегося основанием пирамиды. Но этот треугольник по условию прямоугольный⇒центр описанной окружности лежит в середине гипотенузы, в точке D. AD=AB/2=a; H/AD=tg 30°; H=a/√3; V =(1/3)S_(основания)·H=(1/3)(1/2)a·a√3·a/√3=a^3/6
Хорошая задача, заставляющая тряхнуть стариной и вспомнить некоторые трюки, полезные при работе с трапецией.
Трапеция ABCD; AD - большее основание, внизу; BC - меньшее основание, наверху. Перенесем диагональ BD на величину верхнего основания. Другими словами, через точку С проводим прямую, параллельную BD, до пересечения с продолжением AD в точке E. Получился равнобедренный треугольник ACE с боковыми сторонами, равными диагоналям трапеции, то есть AC=CE=50; при этом основание треугольника равно сумме оснований трапеции, то есть удвоенной средней линии; AE=96. Расстояние между основаниями трапеции равно высоте этого треугольника, найдем ее. Поскольку высота CF равнобедренного треугольника ACE, опущенная на его основание, является также медианой, можем найти CF из прямоугольного треугольника ACF с теоремы Пифагора:
Замечание. Многие наряду с самым известным прямоугольным треугольником с целыми сторонами (египетским: 3-4-5) знают и несколько других, одним из них является треугольник 7-24-25, стороны которого в 2 раза меньше сторон нашего. Заметив это, можно было избежать применение теоремы Пифагора (впрочем, не знаю, что сказала бы на этот счет Ваша учительница)
Найдем высоту пирамиды. Поскольку боковые ребра наклонены под одинаковыми углами к плоскости основания, проекции этих ребер на основание совпадают (каждая из них находится из прямоугольного треугольника, одним из катетов которого является высота пирамиды, а углом напротив нее является угол в 30°). Отсюда следует, что вершина пирамиды проектируется в центр окружности, описанной вокруг треугольника, являющегося основанием пирамиды. Но этот треугольник по условию прямоугольный⇒центр описанной окружности лежит в середине гипотенузы, в точке D. AD=AB/2=a; H/AD=tg 30°; H=a/√3;
V =(1/3)S_(основания)·H=(1/3)(1/2)a·a√3·a/√3=a^3/6
ответ: a^3/6