Решение: 1)Пусть в одной части х см, тогда по условию задачи длина одного из катетов равна 4х см, а длина второго равна 3х см. 2)Площадь прямоугольного треугольника равна половине произведения катетов, тогда S=·4x·3x S=24 см², тогда ·4x·3x=24 ·12x²=24 6x²=24 x²=24:6 x²=4 x=2 Получили, что в одной части 2 см, тогда длина большего катета равна 4·2=8(см), длина меньшего катета равна 3·2=6(см). ответ: 8 см, 6 см.
По первому признаку подобия треугольников имеем, что данные равнобедр.треуг. подобны. Коэффициент их подобия равен как отношению соотв.сторон, так и отношению периметров. Найдем боковые стороны первого треугольника. Высота к основанию является также медианой, значит по теореме Пифагора боковая сторона равна кореньиз(64+36)=10. Периметр первого треугольника равен 10+10+16=36. Коэффициент подобия k=54/36=3/2=1,5. Значит боковые стороны второго равнобедр.треугольника равны 10*1,5=15 см, а основание равно 16*1,5=24 см.
основа 3,5 м( боковые стороны равны 2+2=4 7,5-4=3,5)