1)
а) (3; 3)
б) АВ(2; 8) |AB|=√4+64=√68=2√17
c) -1=2k+b|*2
7=4k+b
-2=4k+2b
7=4k+b
-9=b
2k=-1-b=8
k=4
y=4x-9
2)(0;0 )
б)CD(-6;8) |CD|=√36+64=10
r=5
в)x²+x²=25
3)середина АС (2;1) середина BD(2;1)
ABCD параллелограмм
AB(2;4)|AB|=√20
BC(2;-4)|BC|=√20
CD(-2; -4)|CD|=√20
AD(2; -4)|AD|=√20
AB=BC=CD=AD
ABCD ромб
4) (3;3)
|AB|=√18=3√3
8=4k+b
-2=2k+b
8=4k+b
-4=4k+2b
12=-b
b=-12
k=5
y=5x-12
5)(0;3 )
б)CD(-8;0) |CD|=√64=8
r=4
в)(x+8)²+y²=16
6) AB(-3;-3)|AB|=3√2
BC(2;-2) |BC|=2√2
CD(3;3)|CD|=3√2
AD(2;-2)|AD|=2√2
ABCD параллелограмм
AC(-1;-5)|AC|=√26
BD(5;1)BD=√26
ABCD прямоугольник
Треугольник, получившийся при соединении середин сторон исходного треугольника, подобен ему, так как при соединениисередин сторон получается треугольник, состоящий из средних линий.
Коэффициент подобия
k=2:1
Отношение площадей подобных фигур равно квадрату коэффициента их подобия.
Следовательно, площадь второго треугольника в 4 раза меньше площади исходного.
Площадь большего треугольника можно найти по формуле Герона.
Но если внимательно посмотреть на длины сторон данного треугольника, обнаружится, что их отношение 3:4:5, следовательно, это так называемый "египетский "треугольник.
Он - прямоугольный.
Катеты в этом треугольнике равны 6 и 8.
Площадь прямоугольного треугольника равна половине произведения его катетов.
S₁=6·8:2=24 cм²
Площадь второго
S₂=24:4=6 cм²
AB = CD
угол ECD = 60гр
угол EDC = 60гр , значит треугольник CED - равностороний
тогда боковая сторона равна 6 см , так как CD=ED, а ЕД = 6 см
Теперь надо заметить то что четырехугольник ABCE параллелограмм , тогда меньше основание равна 6,
P= 3*6+12 = 30