Пусть h - высота треугольника BCP из вершины P и t - высота треугольника CBQ из вершины Q. Тогда высота ADP равна 3h (т.к. треугольники ADP и BCP подобны с коэффициентом подобия 3), А высота ADQ равна 3t (т.к. треугольники ADQ и CBQ тоже подобны с коэффициентом подобия 3). Значит, с одной стороны, высота трапеции равна 3h-h=2h, а с другой стороны, эта же высота трапеции равна t+3t=4t. Значит, 2h=4t, т.е. h=2t. Таким образом, площадь ADQ равна AD*3t/2=3BC*3t/2=9t*BC/2, площадь BCP равна BC*h/2=BC*2t/2=BC*t. Значит, искомое отношение площадей равно 9/2.
Пусть h - высота треугольника BCP из вершины P и t - высота треугольника CBQ из вершины Q. Тогда высота ADP равна 3h (т.к. треугольники ADP и BCP подобны с коэффициентом подобия 3), А высота ADQ равна 3t (т.к. треугольники ADQ и CBQ тоже подобны с коэффициентом подобия 3). Значит, с одной стороны, высота трапеции равна 3h-h=2h, а с другой стороны, эта же высота трапеции равна t+3t=4t. Значит, 2h=4t, т.е. h=2t. Таким образом, площадь ADQ равна AD*3t/2=3BC*3t/2=9t*BC/2, площадь BCP равна BC*h/2=BC*2t/2=BC*t. Значит, искомое отношение площадей равно 9/2.
Дан треугольник АВС, высота ВД=8 см, АД=15 см, ДС=6 см.
Сторона АС = 15 + 6 = 21 см.
Отсюда находим площадь треугольника.
S = (1/2)ah = (1/2)*21*8 = 84 см².
Теперь используем формулы радиуса.
Радиус r вписанной окружности равен отношению площади треугольника к его полупериметру.
Находим неизвестные стороны.
АВ = √(15² + 8²) = √(225 + 64) = √289 = 17 см.
ВС = √(6² + 8²) = √(36 + 64) = √100 = 10 см.
Полупериметр р = (17 + 10 + 21)/2 = 48/2 = 24 см.
Находим: r = S/p = 84/24 = 3,5 см.
Радиус R описанной окружности равен:
R = abc/(4S) = 17*10*21/(4*84) = 10,625 см.