1. Відрізки КО та МР перпендикулярні до прямої OP. Відомо, що точки К та М ле- жать по одну сторону від цієї прямої. Доведи, що OM = KP, якщо угол OKP =угол OMP.
Призма - правильная четырехугольная. в основании её - квадрат. диагональ наклонена к плоскости основания под углом 45°. значит, диагональ квадрата - основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. длина этой гипотенузы дана в условии - 4 см пусть х - катеты этого треугольника 4=х√2 х=4: √2=4√2: (√2*√2)=2√2 диагональ основания квадрата =2√2 высота призмы =2√2 основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. радиус этой окружности равен половине стороны квадрата - основания призмы. найдем эту сторону из формулы диагонали квадрата: d=а√2 мы нашли d=2√2, значит сторона квадрата а=2 r= 2: 2=1 имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. s =2πr*h= 2π*2√2 см²=4π√2 см²
1.
М - середина АВ, значит МВ = АВ/2
Р - середина МВ, значит РВ = МВ/2 = АВ/4
К - середина ВС, значит КС = ВС/2
Е - середина КС, значит ЕС = КС/2 = ВС/4
N - середина АС, значит NA = АС/2
G - середина NA, значит GA = NA/2 = AC/4
По условию
PB + EC + GA = 12
АВ/4 + ВС/4 + АС/4 = 12
1/4 · (АВ + ВС + АС) = 12
АВ + ВС + АС = 12 · 4 = 48 (см)
2.
Из решения первой задачи следует, что
АР = 3/4 АВ
ВЕ = 3/4 ВС
CG = 3/4 AC
По условию
AP + BE + CG = 108
3/4 АВ + 3/4 ВС + 3/4 АС = 108
3/4 · (АВ + ВС + АС) = 108
АВ + ВС + АС = 108 · 4/3 = 144 (см)