Опустим перпендикуляры ОР, ОН и ОМ на продолжения сторон угла С треугольника АВС (на стороны внешних углов АВР и ВАН и сторону АВ этого треугольника) . Прямоугольные треугольники ОРВ и ОМВ равны, так как равны их острые углы (ОВ - биссектриса угла АВР), а гипотенуза ОВ общая. Точно так же равны прямоугольные треугольники ОНА и ОМВ, так как равны их острые углы (ОА - биссектриса угла ВАН), а гипотенуза ОА общая. Следовательно, катеты ОР и ОН равны, а это значит, что точка О равноудалена от сторон СР и СН угла С. Значит прямая ОС является биссектрисой угла С. То есть биссектрисы внешних углов при вершинах А и В и биссектриса угла С пересекаются в одной точке. Что и требовалось доказать.
Рисунок схематический. Идея вот в чем. Так как лучи являются биссектрисами, следовательно углы AKB и BKC делятся на 2 равных угла. Если посмотреть на угол AKC, он равен 180 градусов( полностью развернутый угол) и он же равен сумме всех этих четырех углов, при чем равных по двум парам слева и справа. Все это сокращается пополам и получается, что сумма углов, дающих в сумме MKP, дает как раз 90 градусов. Рисунки смотреть справа налево, то есть сначала второй, потом первый)) Надеюсь, все получится, если что не понял(ла), спрашивай, объясню:))
AС=3√2дм
СD=3дм
АВ=12дм
Объяснение:
СD=AD.
Пусть AD будет х, так как CD=AD, то СD тоже х. DB будет 3х.
S=1/2*CD*AB.
AB=AD+DB=x+3x=4x
18=x*4x*1/2
4х²=18*2
х²=36/4
х=√9
х=3
СD=3дм.
АВ=4*3=12дм
АD=CD=3дм.
∆АСD- прямольный треугольник.
По теореме Пифагора
АС=√(АD²+CD²)=√(3²+3²)=√(9+9)=√18=3√2