М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
елена1179
елена1179
03.04.2022 06:42 •  Геометрия

Треугольники mnk и m1n1k1 подобны; k = 8.8 . найдите стороны треугольника mnk, если m1k1 = 12м, n1k1 = 5м.

👇
Ответ:
Лизка250515
Лизка250515
03.04.2022
MK=12*8,8=105,6
NK=5*8.8=44
или
mk=1,(36)
nk=0,56(81)
4,7(42 оценок)
Открыть все ответы
Ответ:
Sofiaaaaaaaaaaa1
Sofiaaaaaaaaaaa1
03.04.2022

НА ПОУЧИ, НЕУЧ!

Определение. Вектора, параллельные одной прямой или лежащие на одной прямой называют коллинеарными векторами (рис. 1).

Коллинеарные вектора

рис. 1

Условия коллинеарности векторов

Два вектора будут коллинеарны при выполнении любого из этих условий:

Условие коллинеарности векторов 1. Два вектора a и b коллинеарны, если существует число n такое, что

a = n · b

Условия коллинеарности векторов 2. Два вектора коллинеарны, если отношения их координат равны.

N.B. Условие 2 неприменимо, если один из компонентов вектора равен нулю.

Условия коллинеарности векторов 3. Два вектора коллинеарны, если их векторное произведение равно нулевому вектору.

N.B. Условие 3 применимо только для трехмерных (пространственных) задач.

Доказательство третего условия коллинеарности

Пусть есть два коллинеарные вектора a = {ax; ay; az} и b = {nax; nay; naz}. Найдем их векторное произведение

a × b =  

i j k

ax ay az

bx by bz

 = i (aybz - azby) - j (axbz - azbx) + k (axby - aybx) =

= i (aynaz - aznay) - j (axnaz - aznax) + k (axnay - aynax) = 0i + 0j + 0k = 0

Примеры задач на коллинеарность векторов

Примеры задач на коллинеарность векторов на плоскости

Пример 1. Какие из векторов a = {1; 2}, b = {4; 8}, c = {5; 9} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае плоской задачи для векторов a и b примет вид:

ax  =  ay .

bx by

Значит:

Вектора a и b коллинеарны т.к.   1  =  2 .

4 8

Вектора a и с не коллинеарны т.к.   1  ≠  2 .

5 9

Вектора с и b не коллинеарны т.к.   5  ≠  9 .

4 8

Пример 2. Доказать что вектора a = {0; 3} и b = {0; 6} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2

ay 3

Найдем значение na:

na = {2 · 0; 2 · 3} = {0; 6}

Так как b = na, то вектора a и b коллинеарны.

Пример 3. найти значение параметра n при котором вектора a = {3; 2} и b = {9; n} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay .

bx by

Значит:

3  =  2 .

9 n

Решим это уравнение:

n =  2 · 9  = 6

3

ответ: вектора a и b коллинеарны при n = 6.

Примеры задач на коллинеарность векторов в пространстве

Пример 4. Какие из векторов a = {1; 2; 3}, b = {4; 8; 12}, c = {5; 10; 12} коллинеарны?

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности, которое в случае пространственной задачи для векторов a и b примет вид:

ax  =  ay  =  az .

bx by bz

Значит:

Вектора a и b коллинеарны т.к.   1 4  =   2 8  =   3 12  

Вектора a и с не коллинеарны т.к.    1 5  =   2 10  ≠   3 12  

Вектора с и b не коллинеарны т.к.   5 4  =   10 8  ≠   12 12  

Пример 5. Доказать что вектора a = {0; 3; 1} и b = {0; 6; 2} коллинеарны.

Решение: Так как вектора содержат компоненты равные нулю, то воспользуемся первым условием коллинеарности, найдем существует ли такое число n при котором:

b = na.

Для этого найдем ненулевой компонент вектора a в данном случае это ay. Если вектора колинеарны то

n =  by  =  6  = 2

ay 3

Найдем значение na:

na = {2 · 0; 2 · 3; 2 · 1} = {0; 6; 2}

Так как b = na, то вектора a и b коллинеарны.

Пример 6. найти значение параметров n и m при которых вектора a = {3; 2; m} и b = {9; n; 12} коллинеарны.

Решение: Так как вектора не содержат компоненты равные нулю, то воспользуемся вторым условием коллинеарности

ax  =  ay  =  az .

bx by bz

Значит:

3  =  2  =  m

9 n 12

Из этого соотношения получим два уравнения:

3  =  2

9 n

3  =  m

9 12

Решим эти уравнения:

n =  2 · 9  = 6

3

m =  3 · 12  = 4

9

ответ: вектора a и b коллинеарны при n = 6 и m = 4.

4,8(80 оценок)
Ответ:
Shurikoff1
Shurikoff1
03.04.2022

Хитрый треугольник со стороной 5 — ни что иное, как египетский треугольник со сторонами 3, 4, 5.

Т₁, Т₂, Т₃ — точки касания шаров исходной плоскости

U₁, U₂, U₃ – точки касания шаров второй плоскости

O₁, O₂, O₃ – центры шаров

Пусть расстояние 3 между точками касания шаров r₁ и r₂, расстояние 4 — между шарами r₁ r₃, расстояние 5 — между шарами r₂ r₃

Рисунок 1 - вид сверху на плоскость с точками касания шаров. Красными окружностями показаны вычисленные радиусы шаров

----------------------------------------

Рассмотрим прямоугольную трапецию T₁T₂O₂O₁ (рисунок 2), образованную точками касания двух шаров и их центрами. Основания этой трапеции — радиусы шаров, наклонная боковая сторона — сумма радиусов,

O₁O₂ = r₁ + r₂

боковая сторона с прямыми углами — это сторона исходного треугольника.

T₁T₂ = 3

Проекция наклонной боковой стороны на основание равна разнице радиусов шаров r₂ - r₁

По т. Пифагора для прямоугольных треугольников в каждой из трёх таких трапеций

(r₂ – r₁)² +3² = (r₂ + r₁)²

(r₃ – r₁)² +4² = (r₃ + r₁)²

(r₃ – r₂)² +5² = (r₃ + r₂)²

r₁² - 2*r₁*r₂ + r₂² + 9 = r₁² + 2*r₁*r₂ + r₂²

r₁² - 2*r₁*r₃ + r₃² + 16 = r₁² + 2*r₁*r₃ + r₃²

r₂² - 2*r₂*r₃ + r₃² + 25 = r₂² + 2*r₂*r₃ + r₃²

4*r₁*r₂ = 9

4*r₁*r₃ = 16

4*r₂*r₃ = 25

из второго

r₁ = 4/r₃

подставим в первое и третье

4*4/r₃*r₂ = 9

4*r₂*r₃ = 25

Перемножим

4*4*4*r₂² = 9*25

8*r₂ = 3*5

r₂ = 15/8

подставим в первое

4*r₁*15/8 = 9

r₁ = 6/5

и подставим в третье

4*15/8*r₃ = 25

r₃ = 10/3

Радиусы шаров определены.

Между пересекающимися плоскостями шары располагаются так, что меньший шар r1 ближе всего к линии пересечения, средний шар r2 дальше, и наибольший ещё дальше r3

Для трапеции из пункта T₁T₂O₂O₁ продолжим наклонную боковую сторону O₂O₁ до линии пересечения плоскостей. (рисунок 3)

x = Т₁K – расстояние от точки касания меньшего шара до линии пересечения плоскостей по прямой,

Из подобия ΔT₁O₁K и ΔT₂O₂K

x/r₁ = (x+3)/r₂

x*r₂ = (x+3)*r₁

x*15/8 = x*6/5 + 18/5

x*(75 – 48)/40 = 18/5

27x = 18*8

3x = 16

x = 16/3

KT₁ = 16/3

Аналогично для шаров r₁ r₃ рассмотрим трапецию Т₁T₂O₂O₁ и ΔT₁O₁L, ΔT₂O₂L (рисунок 4)

x/r₁ = (x+4)/r₃

x*r₃ = (x+4)*r₁

x*10/3 = x*6/5 + 24/5

x*(50 – 18)/15 = 24/5

32/15*x = 24/5

4/3*x = 3

x = 9/4

LT₁ = 9/4

----------------------------------------------

Найдём высоту треугольника KLT₁

Гипотенуза по т. Пифагора

KL² = KT₁² + LT₁² = (9/4)² + (16/3)² = 4825/144 = 25/144 * 193

KL = 5/12*√193

Площадь через катеты равна площади через гипотенузу и высоту к ней

9/4*16/3 = MT₁*5/12*√193

3*4 = MT₁*5/12*√193

MT₁ = 144/5/√193

----------------------------------------

Теперь перейдём в секущую плоскость O₁T₁M (рисунок 5)

∠O₁MT₁ = arctg(6/5/144*5√193) = arctg(√193/24)

Угол между плоскостями

∠O₁MU₁ = 2*arctg(√193/24)

Расстояние между точками касания плоскостей малым шаром

O₁M по т. Пифагора

O₁M² = 36/25 + 144²/(25 *193) = 27684/4825

O₁M = √(27684/4825) = 6/5*√(769/193)

Высота треугольника O₁MT₁ через площадь, площадь через катеты и площадь через гипотенузу и высоту к ней.

6/5 * 144/(5√193) = h*6/5*√(769/193)

144/5 = h√769

h = 144/(5√769)

Расстояние между точками касания плоскостей малым шаром

T₁U₁ = 2h = 288/(5√769)


Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
Три шара касаются между собой и плоскостей двугранного угла. на одной из них точки касания образуют
4,4(3 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ