пусть
длина медаины АА1=а
длина медины СС1=с
точка персечения О делит медианы на отрезки -свойство медиан
СО=2/3*с
ОС1=1/3*с
АО=2/3*а
ОА1=1/3*а
треугольники АОС1 и СОА1 - прямоугольные ,
т к медианы треугольника АА1 и СС1 пресекаются под углом 90 градусов
тогда по теореме Пифагора
СО^2 +OA1^2 =CA1^2 подставим сюда а , c CA1=16/2
(2/3*с)^2 +(1/3*а)^2= (16/2)^2 (1)
ОC1^2 +OA^2 =AC1^2 подставим сюда а , c AC1=12/2
(1/3*с)^2 +(2/3*а)^2= (12/2)^2 (2)
решим систему двух уравнений (1) и (2)
здесь а =4√3 с=2√33
теперь найдем сторону АС
по теореме Пифагора
АС^2= (2/3*c)^2 +(2/3*a)^2=(2/3)^2*(c^2+a*2)=(2/3)^2*((2√33)^2+(4√3)^2)=80
AC=√80 =4√5
ответ AC=4√5
Свойство параллельного проецирования: Проекции двух скрещивающихся (не пересекающихся) прямых линий в зависимости от направления проецирования могут пересекаться либо быть параллельными.
Если плоскости α и β пересекаются, прямые a и b лежат в двух разных плоскостях, перпендикулярных линии пересечения плоскостей α и β, то проекции таких прямых на плоскости будут параллельны, однако сами прямые могут быть скрещивающимися. То есть по параллельным проекциям прямых на пересекающиеся плоскости НЕЛЬЗЯ утверждать, что сами прямые параллельны.
На рисунке пример, когда плоскости α и β не ортогональны и прямые параллельны плоскостям : а║α, b║β.