Средняя линия треугольника соединяет середины двух его сторон, параллельна третьей и равна её половине. Обозначим треугольник АВС. АВ=ВС. Если средняя линия соединяет середины АВ и ВС, то основание АС треугольника равно 2•5=10. Тогда сумма равных боковых сторон равна 40-10=30, и каждая из них 30:2=15 см.
Средняя линия может соединять и середины одной боковой стороны и основания. Рассмотрим такой случай для данного условия. Пусть средняя линия равна половине боковой стороны АВ. Тогда каждая боковая равна 2•5=10, их сумма 20 см, и на основание останется 40-20=20 см. Из неравенства треугольника: любая сторона меньше суммы двух других. Следовательно, для данного треугольника основание равно 10 см, боковые стороны по 15 см.
DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.