Объяснение:Если в основании лежит квадрат, то пирамиду называется четырехугольной, если треугольник – то треугольной. Высота пирамиды проводится из ее вершины перпендикулярно основанию. Также для расчета площади используется апофема – высота боковой грани, опущенная из ее вершины.
Формула площади боковой поверхности пирамиды представляет собой сумму площадей ее боковых граней, которые равны между собой. Однако этот расчета применяется очень редко. В основном площадь пирамиды рассчитывается через периметр основания и апофему:
S_bok=1/2 Pa
(-4-2)^2+(3-7)^2=(36+16)=52
Сторона МТ^2 равна по теореме пифагора ( Мх-Тх)^2+(Му-Ту)^2=(-4-8)^2+(3+2)^2=144+25=169
Сторона РТ^2 равна по теореме Пифагора (Рх-Тх)^2+(Ру-Ту)^2=(2-8)^2+(7+2)^2=36+81=117
Отсюда получаем что по теореме Пифагора для прямоугольного треугольника квадрат гипотенузы равен сумме квадратов катетов.
Находим гипотенузу это самая большая сторона соответсвенно это сторона МТ
тогда МТ^2=РТ^2+МР^2 подставляем значения получаем
169=117+52 => 169=169
так как сумма квадратов катетов рана квадрату гипотенузы значит этот треугольник прямоугольный