BDA = 90°
ABC= 60°
Объяснение:
ВСК= 150°, значит ВСD= 30, так как образуется смежный угол если их сложить то получится 180°.
Значит исходя из полученного ответа DAB=30° обьясняется это тем что треугольник равнобедренный.
Если BD медиана, значит она делит противостоящую сторону пополам. Из этого исходит, что, медиана в нашем случае делит треугольник пополам образуя угол в 90°=BDA.
Осталось найти угол.
Так как треугольник имеет сумму всех углов равную 180° мы сложим угол BDA и DAB, получим угол ABD
90°+30°=120°
180°-120°=60° угол ABC
Решение.
По Пифагору найдем второй катет основания призмы:
√(15²-12²)=√(27*3)=9см.
Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано).
Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы.
Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ.
Решение.
Условие для однозначного решения не полное.
Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2".
Проходящее - содержащее это ребро или пересекающее его?
Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины?
Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN).
Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ.
Вывод: однозначного решения по задаче с таким условием нет.