М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lesja021
lesja021
10.01.2021 20:19 •  Геометрия

В прямоугольном треугольнике ABC C=угол 90°, BC=11 см, AB=22 см.Найдите углы,которые образует высота CH с катетами треугольника. ОТВЕЧАЙТЕ ЧЕСТНО Можно ответ с рисунком и решением ​​

👇
Ответ:
NikolayNik12
NikolayNik12
10.01.2021

Угол А = 30, угол Б = 60. Вот

4,6(86 оценок)
Открыть все ответы
Ответ:
aliska561
aliska561
10.01.2021
М=середина ас, значит ее координаты найдем как среднее арифметическое координат точек а и с м(-1; -1; -1) ас=(8; 12; -8) bm=(-5; -3; 1) cos(ac; bm)=(ac*bm)/(/ac//bm/)    в числителе - скалярное произведение, в знаменателе - модули, то есть длины векторов ac*bm=-40-36-8=-84 /ac/=√(64+144+64)=√272 /bm/=√(25+9+1)=√35 cos(ac; bm)=-84/(√272√35)=-84/(4√17√7√5)=-21/√595 ∠(ac; bm)=arccos(-21/√595)  -искомый угол, значение нетабличное, по другому не запишешь  ответ: arccos(-21/√595)
4,4(37 оценок)
Ответ:
hvbdnnd
hvbdnnd
10.01.2021

Дан равнобедренный ΔABC, AB — основание. ∠A = ∠B.

1-й случай: биссектриса угла при основании (AD), высота из вершины на основание тр-ка (CH). ∠AEH = 75°.

Так как CH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ CH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

2-й случай: биссектриса угла при основании (AD), высота из противоположного угла при основании тр-ка (BH). ∠AEH = 75°.

Так как BH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ BH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

3-й случай: биссектриса угла при вершине (CD), высота из угла при основании тр-ка (AH). ∠CEH = 75°.

CD — биссектриса, и высота и медиана, т.к. опущена из вершины на основание равнобедренного тр-ка.

Так как AH — высота, тогда ΔCEH — прямоугольный, ∠CHE = 90° (EH ∈ AH)

∠ECH = 90°−∠CEH = 90°−75° = 15°

∠A = ∠B = 90°−∠ECH = 90°−15° = 75° (т.к. ΔCBD — прямоугольный, ∠CDB = 90°).

ответ: угол при основании данного треугольника может быть равен 15° или 75°.


В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
4,4(91 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ