Окружность, проходящая через все вершины прямоугольного треугольника, описана около этого треугольника. Центр описанной окружности - это середина гипотенузы. Достаточно найти центр гипотенузы, построив к ней серединный перпендикуляр
ΔABC - прямоугольный: ∠C = 90° 1) Из точек А и В построить полуокружности одинакового радиуса: M и N - точки пересечения окружностей 2) Провести прямую MN. Точка T - пересечение прямой MN и гипотенузы AB - середина гипотенузы. 3) Циркулем измерить расстояние AT и провести этим радиусом окружность с центром в точке Т.
Подобные треугольники - треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.
Признаки: 1) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. 2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны. 3) Если три стороны одного треугольника пропорциональны трём сторонам другого, то такие треугольники подобны.
ΔABC - прямоугольный: ∠C = 90°
1) Из точек А и В построить полуокружности одинакового радиуса: M и N - точки пересечения окружностей
2) Провести прямую MN. Точка T - пересечение прямой MN и гипотенузы AB - середина гипотенузы.
3) Циркулем измерить расстояние AT и провести этим радиусом окружность с центром в точке Т.