1. Расстояние от точки до прямой - это перпендикуляр к прямой. Наклонные к прямой и этот перпендикуляр образуют два прямоугольных треугольника. с гипотенузами, равными 13см и 15см и катетами, равными Х и Х+4. Второй катет - искомое расстояние - общий. Тогда по Пифагору можем написать: 13²-х² = 15²-(х+4)². Отсюда х=5см. Искомое расстояние равно: √(169-25) = 12 см.
2. Так как диагональ АС равнобокой трапеции АВСD образует с боковой стороной CD угол АСD, равный 90°, то большее основание трапеции AD является диаметром описанной окружности и равно 2R. В прямоугольном треугольнике ACD: Sinα = CD/AD => CD=2R*Sinα, а AC=2R*Cosα. Высота трапеции СН - это высота треугольника ACD, опущенная из прямого угла и по свойству этой высоты, равна: АС*СD/AD или СН=4R²Sinα*Cosα/2R = 2RSinα*Cosα. Но по формуле приведения 2Sinα*Cosα =Sin2α. Тогда ответ:
СН = RSin2α.
Угол BAD = 30; Угол ADC = 90.
Так как ВD диагональ, образующая перпендикуляр со стороной BA, то треугольник ABD - прямоугольный.
По свойству катета против угла в 30 градусов:
Угол BAD = 30, AD=16, следовательно катет BD = 8 см.
Угол BCD = 90, ABC = 150.
Так как угол ABD = 90 градусов, то угол DBC = 150-90=60 градусов.
CDB = 30 градусов.
По свойству катета против угла в 30 градусов:
CDB = 30 градусов.
BD = 8 см. ВС = 4 см, как катет против угла в 30 градусов.
Средняя линия трапеции, обозначим её, как LK.
LK= BC + AD/ 2 = 4 + 16 / 2 = 10 см.
ответ: LK = 10 см.