Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
ответ:
. в обоих случаях верно, по свойству перпен. прямых
2.а) неверно, т. к она явл. скрещивающейся с прямой с; б) верно, т. к. прямая в лежит в пл. альфа
3. нет, т. к. если прямые параллельны, то прямая в тоже должна быть перпендикулярна пл. альфа, а это противоречит условию
4. нет, они могут быть скрещивающимися
5. существует, она может лежать в одной плоскости с прямой а быть ей перпендикулярнойи пересекать прямую в под углом 90 градусов
6. верно. через две пересекающиеся пр. можно провести пл. , а так как третья прямая их пересекает, то тоже лежит в этой пл.
7. а) могут, по свойству перпендикулярности прямой и пл, б) нет, т. к. они параллельны
8. можно, пример: координатная плоскость xyz
9. др. диагональ параллельна этой пл, т. к. диагонали квадрата пересекаются под прямым углом
10. а) 6 т. к. там 6 взаимно пересекающихся плоскостей, б) 8, т. к. у параллел. 8 линий пересечения плоскостей и каждой из них можно провести двугранные углы
SoulCraft-pe.ru Minecraft