Заданная сторона АВ, О - точка пересечения медиан, S - площадь треугольника АВС.
Тогда площадь треугольника АОВ равна S/3,
а стороны АО = 18*(2/3) = 12, ВО = 24*(2/3) = 16, АВ = 20.
Очевидно, что АОВ - "египетский" треугольник (то есть прямоугольный треугольник, подобный треугольнику со сторонами 3,4,5, коэффициент подобия равен 4), поэтому его площадь равна 12*16/2 = 96, а площадь АВС S = 96*3 = 288
Что вы там у Гоши68 нашли неправильного? Все он верно сделал, просто написал без пояснений. Другое дело, что можно было бы заметить, что АОВ - прямоугольный треугольник, но и без этого все равно решение верное.
Вообще-то, я хочу пару слов сказать тут тем, кто серьезно готовится к экзаменам. Если вы применяете такую вещь, как формула Герона - вы должны быть готовы на ходу её вывести, если преподаватель потребует. И не только её, а еще и кучу сопутствующих формул вроде малоизвестной теоремы тангенсов ... А это намного сложнее и длинее, чем эта детская задачка.
5/7b - 3/4a (b и a - векторы).
Объяснение:
Т.к. MD=MC+CD (по правилу треугольника).
Мы знаем, что у пар-ма противолежащие стороны равны и параллельны => BC=AD; AB=CD. Также мы знаем, что начало векторов AB и AD находится в точке A. Из этого мы можем сделать, что BC сонаправлен с AD, потому что MD=MC+CP по правилу треугольника => MC=5/7AD ( т.к. мы знаем, что BC= 7 единиц).
CP= -¾AB, т.к. CD и AB направлены в разные стороны.