М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mraleex
Mraleex
20.07.2022 18:15 •  Геометрия

1.укажите теорему,соответствующую условию и заключению обратной теоремы. условие-две параллельные прямые пересечены секущей заключение-накрест лежащие углы равны 1)если две параллельные прямые пересечены секущей, то накрест лежащие углы равны 2) если две параллельные прямые пересечены секущей, то накрест лежащие углы не равны 3) если при пересечении двух прямых секущей накрест лежащие углы равны,то прямые не параллельны. 4) такой теоремы не существует

👇
Ответ:
лера2042
лера2042
20.07.2022
1)если две параллельные прямые пересечены секущей, то накрест лежащие углы равны
в учебнике тоже самое написано
4,7(93 оценок)
Открыть все ответы
Ответ:
Михаил684
Михаил684
20.07.2022
Основание параллелепипеда - квадрат, значит диагонали основания равны между собой  и равны Do=а√2.
Заметим, что малая диагональ сечения равна диагонали основания - как  противоположные стороны прямоугольника, то есть dc=а√2.
Значит сторона сечения тоже равна а√2 (так как острый угол ромба равен 60°, а это значит что треугольник, образованный сторонами ромба и его малой диагональю,  равносторонний).
Итак, b=а√2.
Найдем большую диагональ сечения (ромба). Половина этой диагонали находится по Пифагору:
Dc/2=√[b²-(d/2)²]=√[2a²-(2a²/4)]=√[2a²-(a²/2)]=√[(3a²/2)]=a√(3/2)=a√6/2.
Тогда Dс=a√6.
Найдем значение отрезка СС2 - расстояние, на котором плоскость сечения пересекает  ребро параллелепипеда СС1.
По Пифагору СС2=√(Dс²-Do²)=√(6a²-2a²)=2a.
Угол между двумя пересекающимися плоскостями - это двугранный угол, образованный  полуплоскостями и измеряется величиной его линейного угла, получаемого при  пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть  перпендикулярной к обеим плоскостям).
Тогда синус угла наклона плоскости сечения к плоскости основания (или угол между  ними) равен отношению СС2 к большой диагонали сечения Dс, то есть угол наклона  плоскости сечения к плоскости основания равен α=arcSin(2a/а√6) или α=arcSin (√6/3).
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой  прямой и ее проекцией на данную плоскость.
Тогда угол наклона бокового ребра АА1 параллепипеда к плоскости сечения равен 90°- α. Но Sin(90-α)=Сosα, а Cosα=√(1-6/9)=√3/3.
В силу параллельности всех боковых ребер параллелепипеда, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона бокового ребра параллелепипеда к плоскости сечения равен  arcCos(√3/3).
Расстояние от точки О до плоскости сечения равно ОН= АО*Sinα=(а√2/2)*(√6/3)=а√3/3.
Опустим перпендикуляр DD2 из точки D на плоскость сечения. Тогда DD2=OH=а√3/3.  АD2 - это проекция ребра АD на плоскость сечения.
Значит <D2AD - это угол между ребром АD и плоскостью сечения. 
Sin<(D2AD)=(DD2/AD)=(а√3/3)/a= √3/3.
В силу симметричности ребер АD и АВ относительно диагонали АС основания и в силу попарной параллельности ребер обоих оснований, они все наклонены к плоскости сечения под этим углом.
Итак, угол наклона ребер основания параллелепипеда к плоскости сечения равен  arcSin(√3/3).

ответ: угол наклона боковых ребер параллелепипеда к плоскости сечения равен
arcCos(√3/3).
угол наклона ребер основания параллелепипеда к плоскости сечения равен
arcSin(√3/3).

Плоскость пересекает прямоугольный параллелепипед так что,фигура получившаяся в сечении является ром
4,5(35 оценок)
Ответ:
kirillstetskii
kirillstetskii
20.07.2022

  проводим касательную, проводим радиусы в точки касания, и соединяем центры. кроме того, из центра меньшей окружности проводим пепендикуляр к радиусу большей окружности, проведенном у точку касания. этот перпендикуляр равен общей касательной (там прямоугольник: получился прямоугольный треугольник со сторонами d = корень(80) - линия центров, это гипотенуза треугольника, (r - r),   и второй катет в качестве искомого расстояния.

x^2 = d^2 - (r - r)^2;

по условию r - r = 4; x^2 = 80 - 16 = 64; x = 8;

4,5(20 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ