Мага́дха (санскр. मगध) — древняя страна и историческая область в Индии, упоминаемая ещё в Рамаяне и Махабхарате, управлялась царями-буддистами. За долгую историю Индии сменялось множество династий Магадхи (Шайшунага, Нанда и др.). Магадха входила в список шестнадцати махаджанапад — больших государств в буддийских и джайнских источниках. Царь Бимбисара (543—491 до н. э.) из династии Харьянка, живший во времена Будды развитию буддизма и хорошо относился к джайнизму.
Образование Магадхи, по сведению в ведических текстах, произошло около 600 года до н. э. Самое раннее упоминание Магадхи происходит в Атхарваведе, где они перечисляются наряду с ангами, гандхари и муджаватами. Ядром королевства была область Бихара к югу от Ганга; его первой столицей была Раджагриха (современный Раджгир), затем Паталипутра (современная Патна). Магадха расширилась, когда была присоединена большая часть Бихара и Бенгалии с завоеванием Конфедерации Ваджжи и Анги. В конечном итоге королевство Магадха охватило Бихар, Джаркханд, Ориссу, Западную Бенгалию, восточный Уттар-Прадеш и районы современных Бангладеш и Непала.
5см.
Объяснение:
По условию в треугольнике Δ ABC AB=5√2 см, ∠B=30°, ∠ C=45°.
Для нахождения стороны AC воспользуемся теоремой синусов: стороны треугольника пропорциональны синусам противолежащих углов.
\begin{gathered}\frac{AC}{sinB} =\frac{AB}{sinC} ;AC= \frac{AB*sin B}{sinC} ;AC=\frac{5\sqrt{2} *sin30^{0} }{sin45^{0} } =\frac{5\sqrt{2} *\frac{1}{2} }{\frac{\sqrt{2} }{2} } = \frac{5\sqrt{2} }{\sqrt{2} } =5\end{gathered}sinBAC=sinCAB;AC=sinCAB∗sinB;AC=sin45052∗sin300=2252∗21=252=5
Значит AC=5 см.