Дано:
АВС - тругольник;
ВD = 12 см - высота АВС;
АD = 5 cм;
CD = 9 см.
Найти: S (ABC), AB, BC.
1) АC = AD + CD = 5 см + 9 см = 14 см.
2) S (ABC) = 0,5 • АС • BD = 0,5 • 14 см • 9 см = 7 см • 9 см = 63 кв. см.
3) Рассмотрим прямоугольный треугольник АВD (т. к. BD - высота АВС => угол ADB = 90°):
▪По теореме Пифагора:
АВ^2 = АD^2 + BD^2 = 5^2 + 12^2 = 25 + 144 = 169 => АВ = корню из 169 = 13 см.
4) Рассмотрим прямоугольный треугольник СВD (т. к. BD - высота АВС => угол СDB = 90°):
▪По теореме Пифагора:
ВС^2 = CD^2 + BD^2 = 9^2 + 12^2 = 81 + 144 = 225 => ВС = корню из 225 = 15 см.
ответ: 63 кв. см; 13 см; 15 см.
1)BD высота по условию, значит в треугольник по одному равному углу. Сумма двух других углов=90 градусов. Если ∠CBD больше ∠ABD, то
∠C меньше ∠A⇒ CB больше AB.
2)В треугольнике ВМА угол ВАМ больше угла ВМА. (т.к. в любом треугольнике против большей стороны лежит больший угол и по условию ВМ>АВ)
Для треугольника ВМС угол ВМА является внешним и равен сумме внутренних углов треугольника ВМС, не смежных с ним. Т.е. угол ВМА больше угла ВСМ
Итак угол ВАМ > угла ВМА > угла ВСМ.
Значит, А > C.
3)Угол А в 2 раза меньше внешнего угла ВСК, то есть
∠А=α , ∠ВСК=2α.
Внешний угол треугольника = сумме двух внутренних углов, не смежных с ним. Значит, ∠ВСК=∠А+∠В ⇒ 2α=α+∠В ⇒ ∠В=α .
Получаем треугольник, у которого равны два угла, значит, треугольник равнобедренный ( углы при основании треугольника равны ).
4)7 треугольников
Объяснение: