Тут вся соль в том, что AB/BC =(свойство биссектрисы) = AM/MC = (из за MK II AB) = BK/KC; Пусть точки касания вписанной окружности делят стороны треугольника на отрезки x y z, так, что x + y = AB; (надо найти) x + z = AC = 17; y + z = BC = 12; Из первой цепочки равенств следует, что (x + y)/(y + z) = y/z; или xz = y^2; если подставить x = 17 - z; y = 12 - z; получится квадратное уравнение (12 - z)^2 = (17 - z)z; или 2z^2 - 41z + 144 = 0; откуда z1 = 16; z2 = 9/2; Ясно, что z < 12; поэтому остается корень z = 9/2; x + y + 2z = 17 + 12 = 29; откуда x + y = 20; AB =20;
Имеем трапецию АВСД. Из данных ,что боковая сторона и диагональ основания взаимно перпендикулярны и равны соответственно 15 см и 20 см, то большее основание трапеции равно 25 см (по Пифагору). Находим косинус угла Д. cos Д = (15² + 25² - 20²)/(2*15*25) = 0,6. Синус Д = √(1 - 0,6²) = 0,8. Находим сторону ВС: ВС = АД - 2*СД*cos Д = 25 - 2*15*0,6 = 25 - 18 = 7 см. Средняя линия трапеции в основании призмы и сечения равна: Lср = (25 + 7)/2 = 32/2 = 16 см. Наклонная высота hc сечения равна: 320/16 = 20 см. Высота трапеции h в основании призмы равна 15*sin Д = 15*0,8 = 12 см. Тогда высота призмы H равна: H =√(20² - 12²) = √(400 - 144) = √256 = 16 см. Определяем объём призмы: V = So*H = Lср*h*H = 16*12*16 = 3072 см³.
AB/BC =(свойство биссектрисы) = AM/MC = (из за MK II AB) = BK/KC;
Пусть точки касания вписанной окружности делят стороны треугольника на отрезки x y z, так, что
x + y = AB; (надо найти)
x + z = AC = 17;
y + z = BC = 12;
Из первой цепочки равенств следует, что
(x + y)/(y + z) = y/z; или xz = y^2; если подставить x = 17 - z; y = 12 - z; получится квадратное уравнение (12 - z)^2 = (17 - z)z; или
2z^2 - 41z + 144 = 0; откуда z1 = 16; z2 = 9/2;
Ясно, что z < 12; поэтому остается корень z = 9/2;
x + y + 2z = 17 + 12 = 29; откуда x + y = 20;
AB =20;