Пусть треугольник АВС, где В вершина, а А,С вершины при основании. ВН высота, АМ- биссектриса, а точка К, точка пересечения биссектрисы и высоты.
Определим длину высоты ВН.
ВН = ВК + КН = 7 + 3 = 10 см.
Так как АМ биссектриса угла ВАС, то АК так же биссектриса угла ВАН.
Тогда, по свойству биссектрисы угла: АВ / ВК = АН / КН.
АВ / 7 = АН / 3.
АВ / АН = 7 / 3
Пусть длина отрезка АН = 3 * Х см, тогда АВ = 7 * Х см.
Из прямоугольного треугольника АВН, по теореме Пифагора:
ВН2 = АВ2 – АН2.
100 = 49 * Х2 – 9 * Х2.
Х2 =2,5.
Х=√ 2,5
Тогда АВ = ВС = 7 √2,5
АН = 3√2,5.
Так как АВС равнобедренный, то СН = АН .
Тогда АС = 6√2,5см.
Объяснение:
КОРОЧЕ ОТВЕТ: 6см.
Объяснение:
объясняю : Решение: Высота CK – треугольника ABC равна по теореме Пифагора равна
CK=корень(AC^2-(AB2)^2)=корень((4*корень(3))^2-(4*корень(3)2)^2)=
=6 см.
Высота DK – треугольника ABD равна по теореме Пифагора равна
DK=корень(AD^2-(AB2)^2)=корень(14^2-(4*корень(3)2)^2)= корень(184)=
=2*корень(46) см.
В прямоугольном треугольнике DKC
CK=6 см<2*корень(46) см=DK, значит DK – его гипотенуза, CK –его катет
Поскольку в прямоугольном треугольнике DKC угол DKC(Угол между плоскостями треугольников ABC и ABD) равен 45 градусов, то второй острый угол тоже равен 45 градусов,
следовательно треугольник DKC равнобедренный и его катеты равны между собой.
Значит CD=CK=6 cм.
ВОТ
Відповідь: 70
Пояснення:
Будь здоров