ответ: 600 см²
Объяснение: В параллелограмме сумма квадратов диагоналей равна сумме квадратов всех его сторон.
Ромб - параллелограмм, все стороны которого равны. Примем одну его диагональ равной х, тогда вторая - х+10.
4•25²=х²+(х+10)² ⇒ 2х²+20х-2400=0. Сократив все члены уравнения на 2, получим приведенное квадратное уравнение х²+10х-1200=0.
D=b²-4ac=10²-4·1·-1200=4900; дискриминант положительный. ⇒ уравнение имеет два корня. х=(-b±√D):2 ⇒ х₁=30, х₂=-40 ( не подходит).
d₁=30 см, d₂=30+10=40 см
Площадь ромба равна половине произведения диагоналей.
S=0.5•d₁•d₂=30•40:2=600 см²
Диагонали в этой задаче можно найти по т.Виета: .Сумма корней приведенного квадратного трехчлена равна его второму коэффициенту с противоположным знаком, а произведение - свободному члену. ⇒ х₁+х₂=-10; х₁•х₂=1200 х₁=30, х₂=-40.
В задании, очевидно, надо понимать фразу так: расстояние от СТОРОНЫ основания до противолежащей боковой грани равно 5 корень из 3.
Проведём осевое сечение пирамиды перпендикулярно стороне основания. Получим равнобедренный треугольник, углы α при основании которого равны двугранным углам пирамиды, а высота Н равна высоте пирамиды.
Основание этого треугольника равно стороне основания пирамиды.
Находим синус угла при основании треугольника:
sin α = 5√3/10 = √3/2. Значит, α = 60°.
Отсюда находим высоту пирамиды Н = 5*tg 60° = 5√3.
Получаем ответ: V = (1/3)SoH = (1/3)*10²*5√3 = 500√3/3 куб.ед.
По неравенству треугольника сумма двух сторон должна обязательно быть больше третьей. Пусть третья сторона равна х>0. Тогда получаем следующие неравенства
х < 3,14 + 0,6
3,14 < x + 0,6
0,6 < x + 3,14
Так как x > 0, то третье неравенство выполнено для любого положительного х.
Из первого неравенства получаем, что х < 3,81, а из второго неравенства получаем, что 2,54 < х. Значит
2,54 < х < 3,81.
Так как в условии сказано, что длина третьей стороны является целым числом, то задачу удовлетворяет только х = 3.