3. Прямая, проходящая через вершину А треугольника АВС, пересекает сторону ВС в точке К, если ВК = АВ , = 35", САК = 15' . Найдите углы треугольника АВС.
Чертёж прилагается. Итак, по этому чертежу: большее основание DC = 32 см. Меньшее AB = 20 см. Меньшая сторона - та, что прилегает к прямым углам трапеции. Отрезок BE перпендикулярен DC и параллелен меньшей стороне трапеции AD, а следовательно, равен ей. AD = BE. То есть, мы получаем прямоугольный треугольник BCE, в котором нам известна длина гипотенузы BC = 15 см. Длину меньшего катета EC находим: DC - AB = 32 - 20 = 12 (см). Тогда, по теореме Пифагора (BE я обозначила как x): (см). ответ: длина меньшей стороны прямоугольной трапеции ABCD равна 9 см.
Т. к. не указано биссектрисы каких углов, то надо рассмотреть 2 случая: а) берем биссектрисы 2х острых углов, обозначим величину каждого острого угла как 2х и 2у. сумма острых углов прямоугольного тр. 90*, поэтому сумма половинок - 45* ( х + у = 45* ). Рассмотрим тр ОАВ ( О - пересечение биссектрис) : < AOB 180* - 79* = 101*, т. е. на 2 других приходиться 180* - 101 = 79*. а по условию - 45* . Получили противоречие. б) Берем биссектрисы прямого угла и одного из острых. Рассмотрим тр. АСО ( С - вершина прямого угла) : сумма углов х + 45* +101* = 180*, х = 34* = > 2x = 68* = > 2e = 90* - 68* = 22
В начале 3 задание надо написать
Дано:
Треугольник АВС
ВК=АВ
Объяснение:
а потом продолжаете писать то что на фото