Треугольник ВОС подобен треугольнику АОD по двум углам: Угол СВD равен углу ADB - внутренние накрест лежащие углы при параллельных прямых BC и AD и секущей AD. Угол ВСА равен углу САD -внутренние накрест лежащие углы при параллельных прямых BC и AD и секущей АС. Из подобия треугольников АО:ОС=OD:OB=3:2
Треугольники ВОF и DEO подобны по двум углам: Угол СВD равен углу ADB - внутренние накрест лежащие углы при параллельных прямых BC и AD и секущей AD. Угол BOF равен углу DOE как вертикальные. Из подобия треугольников: BF: ED=BO:OD=2:3, BF=2ED/3=2·15/3=10 см ответ. 10 см.
Угол АОС - центральный, равен длине дуги, на которую он опирается. Опирается на АС, а она относится к Углу В, градусная мера которого 60. значит длина дуги АС = 60*2=120. <AOC=120. В сумме углы A + B + C =180 (свойство треугольника). Угол В нам дан, значит мы можем найти сумму двух других: A+C=180-B A+C=120. Нам дано отношение 5 к 7, но это отношение дуг. Значит умножим на 2 сумму углов, чтобы найти сумму длин дуг и разделим на на эти коэффициенты. 5k+7k=120*2 12k=240 k=20 Нам нужно найти угол А, а это половина дуги BC. BC=5k BC=50*20=100 100\2=50=угол А Тоже самое с углом С AB=7k AB=7*20=140 140\2=70=угол С
Сделаем проверку, <A+<B+<C=180 50+60+70=180. Всё верно
Угол СВD равен углу ADB - внутренние накрест лежащие углы при параллельных прямых BC и AD и секущей AD.
Угол ВСА равен углу САD -внутренние накрест лежащие углы при параллельных прямых BC и AD и секущей АС.
Из подобия треугольников АО:ОС=OD:OB=3:2
Треугольники ВОF и DEO подобны по двум углам:
Угол СВD равен углу ADB - внутренние накрест лежащие углы при параллельных прямых BC и AD и секущей AD.
Угол BOF равен углу DOE как вертикальные.
Из подобия треугольников:
BF: ED=BO:OD=2:3,
BF=2ED/3=2·15/3=10 см
ответ. 10 см.