Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
В этой статье собрана информация по теме «расстояние от точки до прямой»: дано определение расстояния от точки до прямой, приведены графические иллюстрации, разобрано нахождение расстояния от точки до прямой на плоскости и в пространстве методом координат. После каждого блока теории показаны подробные решения примеров и задач на нахождение расстояния от точки до прямой.
Расстояние от точки до прямой определяется через расстояние от точки до точки. Покажем как это делается.
Пусть на плоскости или в трехмерном пространстве задана прямая a и точка M1, не лежащая на прямой a. Проведем через точку M1 прямую b, перпендикулярную прямой a. Обозначим точку пересечения прямых a и b как H1. Отрезок M1H1 называется перпендикуляром, проведенным из точки M1 к прямой a.
Определение.
Расстоянием от точки M1 до прямой a называют расстояние между точками M1 и H1.
Однако чаще встречается определение расстояния от точки до прямой, в котором фигурирует длина перпендикуляра.
Определение.
Расстояние от точки до прямой – это длина перпендикуляра, проведенного из данной точки к данной прямой.
Это определение эквивалентно первому определению расстояния от точки до прямой.

Обратите внимание на то, что расстояние от точки до прямой – это наименьшее из расстояний от этой точки до точек заданной прямой. Покажем это.
Возьмем на прямой a точку Q, не совпадающую с точкой M1. Отрезок M1Q называют наклонной, проведенной из точки M1 к прямой a. Нам нужно показать, что перпендикуляр, проведенный из точки M1 к прямой a, меньше любой наклонной, проведенной из точки M1 к прямой a. Это действительно так: треугольник M1QH1 прямоугольный с гипотенузой M1Q, а длина гипотенузы всегда больше длины любого из катетов, следовательно, .
ответ: АР=8
Объяснение (подробно):
ТР - биссектриса ⇒ ∠КТР=∠РТМ.
Т.к. около четырехугольника описана окружность, все углы, вершины которых лежат на ней, -вписанные. Вписанные углы, которые опираются на одну дугу, равны; равны и хорды, которые стягивают равные дуги.
Угол РМК опирается на дугу РК, и угол КТР опираются на дугу КР, следовательно они равны. Но им равен и угол РТМ , следовательно, равны хорды КР=РМ=16.
Примем АР=х. Тогда ТР=ТА+х=24+х
Рассмотрим ∆ ТКР и АКР. Они имеют по два равных угла, следовательно, подобны. Из их подобия следует отношение ТР:КР=КР:АР ⇒
(24+х):16=16:х
Из пропорции получаем 14х+х²=256 ⇒ х²+24х-256. Решив квадратное уравнение находим х₁=8; х₂=-32 ( не подходит).
АР=х=8.