ABC -- нижнее основание, A1B1C1 -- верхнее основание, D -- проекция точки C1 на плоскость основания ABC, C1D -- высота призмы, C1CD=45°
AA1C1C и BB1C1C -- ромбы с острым углом 30°, AA1B1B -- квадрат
Из треугольника C1DC:
sin C1CD = C1D/C1C
sin(45°)=4*корень(2) / C1C
С1С=4*корень(2)/sin(45°)=4*корень(2)/(корень(2)/2)=4*2=8
Так как все боковые грани -- ромбы (квадрат -- это тоже ромб), то длины всех рёбер призмы равны между собой, следовательно, они равны 8.
Площадь боковой поверхности равна сумме площадей ромбов и квадрата.
Sромба=AC*AA1*sin(30°)=8*8*1/2=32
Sквадрата=AB*AA1=8*8=64
Sбок=2*Sромба+Sквадрата=2*32+64=128
Медиана делит противоположную сторону пополам, т.е. ВД=ДС, следовательно S треугольника ДАС равна 1/2 площади данного треугольника, т.е. 24.
Площадь этого треугольника можно найти по формуле: половина произведения двух сторон на синус угла между ними, следовательно, 24=1/2·10·8·Sin⁄ДАС, отсюда Sin⁄ДАС=24:40=0,6
Используя основное тригонометрическое тождество Sin²A+Cos²A=1, находим Cos⁄ДАС=√1-0,6 ²=0,8
По теореме косинусов находим: ДС²=АД²+АС²-2·АД·АС·Cos⁄ДАС, ДС=√100+64-2·10·8·0,8=√164-128=6
ВС=2·ДС, ВС=12
ответик:
а я откуда знаю А?
Ждем объяснение: