Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу: . Высота в прямоугольном треугольнике, проведенная из вершины прямого угла, делит его на два подобных и подобных исходному треугольнику.
Высота, проведённая из вершины прямого угла на гипотенузу, есть средняя пропорциональная между отрезками гипотенузы, а каждый катет есть среднее пропорциональное между всей гипотенузой и своей проекцией на гипотенузу. Доказательство. Вот наш прямоугольный треугольник ABC, вот его гипотенуза AB, вот высота CH, проведённая из вершины прямого угла на гипотенузу. И вот отрезки, на которые высота делит гипотенузу: AH и BH. И нам надо доказать, что высота — это среднее пропорциональное между отрезками гипотенузы, то есть AH/CH = CH/BH, доказать, что каждый катет — это среднее пропорциональное между гипотенузой и своей проекцией на гипотенузу, то есть AB/AC=AC/AH и AB/BC=BC/BH. Все эти три равенства следуют из подобия трёх изображённых треугольников ▲ACH, ▲BCH и исходного треугольника ▲ABC. Докажем сначала подобие ▲ACH и ▲ABC. У обоих этих треугольников равные прямые углы, и равные углы с кружком — то есть треугольники подобны по первому признаку, и третьи углы (с зубчиками) у них тоже равны. У треугольников ▲BCH и ▲ABC тоже равные прямые углы и равные углы с зубчиками — выходит, эти треугольники тоже подобны по первому признаку, и третьи углы (с кружком) у них тоже равны. У треугольников ▲ACH и ▲BCH тоже равные прямые углы и углы с кружком, и эти треугольники тоже подобны по первому признаку.
Подобие трёх треугольников доказано.
В подобных треугольниках ACH и BCH отношения короткого и длинного катетов равны — а это как раз наше первое равенство. В подобных треугольниках ACH и ABC отношения гипотенузы и короткого катета равны — это наше второе равенство.
В подобных треугольниках BCH и ABC отношения гипотенузы и длинного катета равны — и это наше третье равенство.
Равенства доказаны — а их и надо было доказать.
1). Опускаем высоты из вершин малого основания на большое. Легко видеть, что прямоугольные треугольники имеют углы по 45 градусов, то есть равнобедренные. Поэтому высота трапеции равна (7 - 3)/2 = 2, а площадь 2*(7 + 3)/2 = 10.
2). Диагонали ромба делят его на 4 равных прямоугольных треугольника с гипотенузой 13 и одним из катетов 10/2 = 5. Отсюда второй катет 12, диагональ 24, а площадь равна половине произведения диагоналей, то есть 10*24/2 = 120.
3). Считаем трапецию равнобедренной. Тогда сумма оснований равна сумме боковых сторон, то есть средняя линяя равна боковой стороне. Обозначим её m, а высоту h. Имеем h = m*sin(30) = m/2; S = m*h = m^2/2; m^2 = 2*S = 625; m = 25;
4) 0,21^2 = 0,0441; (можно и так (21/100)^2 = 441/10000 = 0,0441)